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About the Cover

O

This acrostic is the famous sator formula. It can be trandated as:
]
* Arepo the sower holds the wheels at work’
]
The text may be read in four different ways:

(i) Mhorizontally, from left to right (downward) and from right to left
(upward);
(i) Mvertically, downward (left to right) and upward (right to left).

The resulting phrase is aways the same.
1l
It has been suggested that it might be aform of secret message.
1l

This acrostic was unearthed during archeological excavation work at
Pompeii, which was buried, aswell known, by the eruption of Vesuviusin
79[A.D. Theformulacan befound throughout the Roman Empire, probably
also spread by legionnaires. Moreover, it has been found in Mesopotamia,
Egypt, Cappadacia, Britain and Hungary.
0 The sator acrostic may have a mystical significance and might have
been used as a means for persecuted Christians to recognize each other (it
can be rearranged into the form of a cross, with the opening words of the
Lord sprayer, APaternoster O, bothvertically and horizontally, intersecting
at theletter N, the Latin letters A and O corresponding to the Greek letters
alpha and omega, beginning and end of all things).



Preface

Purpose of the book

This book is addressed to undergraduate and graduate students in physics,
mathematics and computer science. It is written at a level comprehensible
to readers with the background of a student near the end of an under-
graduate course in one of the above three disciplines. Note that no prior
knowledge of either quantum mechanics or classical computation is required
to follow this book. Indeed, the first two chapters are a simple introduction
to classical computation and quantum mechanics. Our aim is that these
chapters should provide the necessary background for an understanding of
the subsequent chapters.

The book is divided into two volumes. In volume I, after providing
the necessary background material in classical computation and quantum
mechanics, we develop the basic principles and discuss the main results of
quantum computation and information. Volume I would thus be suitable
for a one-semester introductory course in quantum information and com-
putation, for both undergraduate and graduate students. It is also our
intention that volume I be useful as a general education for other readers
who wish to learn the basic principles of quantum computation and infor-
mation and who have the basic background in physics and mathematics
acquired in undergraduate courses in physics, mathematics or computer
science.

Volume II deals with various important aspects, both theoretical and
experimental, of quantum computation and information. The areas include
quantum data compression, accessible information, entanglement concen-
tration, limits to quantum computation due to decoherence, quantum error
correction, and the first experimental implementations of quantum infor-
mation protocols. This volume also includes a selection of special topics:

vii
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chaos and the quantum-to-classical transition, quantum trajectories, quan-
tum computation and quantum chaos, and the Zeno effect. For an under-
standing of this volume, a knowledge of the material discussed in the first
volume is necessary.

General approach

Quantum computation and information is a new and rapidly developing
field. It is therefore not easy to grasp the fundamental concepts and cen-
tral results without having to face many technical details. Our purpose
in this book is to provide the reader interested in the field with a useful
and not overly heavy guide. Mathematical rigour is therefore not our pri-
mary concern. Instead, we have tried to present a simple and systematic
treatment, such that the reader might understand the material presented
without the need for consulting other texts. Moreover, we have not tried to
cover all aspects of the field, preferring to concentrate on the fundamental
concepts. Nevertheless, the two volumes should prove useful as a reference
guide to researchers just starting out in the field.

To gain complete familiarity with the subject, it is important to practice
problem solving. The book contains a large number of exercises (with
solutions), which are an essential complement to the main text. In order
to develop a solid understanding of the arguments dealt with here, it is
indispensable that the student try to solve a large part of them.

Note to the reader

Some of the material presented is not necessary for understanding the rest
of the book and may be omitted on a first reading. We have adopted two
methods of highlighting such parts:

1) The sections or subsections with an asterisk before the title contain
more advanced or complementary material. Such parts may be omitted
without risk of encountering problems in reading the rest of the book.

2) Comments, notes or examples are printed in a small typeface.
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Chapter 5

Quantum Information Theory

Classical information theory deals with the transmission of messages (say,
binary strings) over communication channels. Its fundamental questions
are: How much can a message be compressed and still be transmitted reli-
ably? Can we protect this message against errors that will appear in noisy
communication channels? In this chapter, we discuss the above questions
in the light of quantum mechanics, which opens up new possibilities for in-
formation theory. Before doing so, we need to introduce a few useful tools.
The density-matrix formalism is the natural framework in which to treat
open and composite quantum systems. We also introduce the concept of
generalized measurement and discuss a simple example in which it proves
to be useful.

Following this, we review the main results of classical information the-
ory. It turns out that it is possible to compress a message into a shorter
string of letters, the compression factor being the Shannon entropy. This is
the content of Shannon’s celebrated noiseless coding theorem. We discuss
the natural extension of this result to quantum mechanics. To this end
one may consider a message whose letters are quantum states, transmit-
ted through a quantum communication channel. Such quantum states may
be treated as though they were (quantum) information and one might thus
ask to what extent this quantum message can be compressed. Schumacher’s
quantum noiseless coding theorem states that the optimal compression fac-
tor is given by the von Neumann entropy. Therefore, the von Neumann
entropy is the appropriate measure of quantum information, just as the
Shannon entropy is for classical information. If Alice codes a classical mes-
sage by means of quantum states, it is natural to ask how much information
Bob can gain on the message by performing (generalized) measurements
on the quantum states received. This is not an easy question since the

257
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transmitted quantum states are not necessarily orthogonal and they can-
not therefore be perfectly distinguished. The Holevo bound establishes an
upper limit on the information accessible to Bob.

We also discuss how to quantify the entanglement content of a generic
pure state and, briefly, how to concentrate entanglement. This last is an
important issue since maximally entangled states are required for faithful
teleportation of quantum states. Entanglement measures and the Peres
separability criterion for mixed states are also briefly addressed. We post-
pone the discussion of the transmission of quantum information over noisy
quantum channels to Chapt. 7, where we shall consider this subject in the
context of quantum-error correcting codes. A special-topic section on the
different definitions of entropy used in physics closes the chapter.

The present chapter requires more formal development than those pre-
ceding. This is quite natural since we are concerned with the most general
results on the properties of quantum information. Nonetheless, in order
to illustrate these general concepts, we shall describe significant concrete
examples in detail.

5.1 The density matrix

In practice, the state of a physical system is often not perfectly determined.
For example, if we consider a beam of atoms emitted by a thermal source,
we do not know the kinetic energy of each atom, but only the distribution
of their kinetic energies. In this case, we say that our information on the
system is incomplete. We only know that the system is in a state taken
from the ensemble

{|w1>a|w2>a“'v|wl>}a (51)

with probabilities {p1,p2,...,pi}, satisfying the condition of unit total
probability, > . p; = 1. We say that we have a statistical mizture (also
known as a mized state) of the states |¢), with weights py. By contrast,
the single states |¢;) are known as pure states. We note that the states
|tr) are not necessarily orthogonal.

As remarked in Sec. 2.4, the statistical mixture of the states |¢y), with
weights pg, should not be confused with the linear superposition

W) = cxltn), [ (52)
P
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It is actually impossible to describe a statistical mixture by means of an
“average state vector”. As we shall see, it is instead possible to describe it
using an “average operator”: the density operator.

The probability p(i¢) that a measurement of the observable A yields
outcome a; is given by

!
p(i) =) pr (Vel Pilve), (5.3)
k=1
where P; is the projector onto the subspace associated with the eigenvalue
a; of A. In this expression, the probabilities (¢|P;|¢r) that A = a; on
the pure states |¢) are computed according to the measurement postulate
discussed in Sec. 2.4. As a result, the mean value of any observable A is

n

l n l
(A) = Zaip(i) = ZpkzaiWHPiWk) = Zpk (Vr|Alg).  (5.4)
k=1 i=1 k=1

i=1
Probabilities therefore appear twice:

(i) in the initial (lack of) information on the system, characterized by the
weights py;

(ii) in the measurement process, characterized by the probabilities
(x| P;|¢k) to obtain outcomes a; from the measurement of the observ-
able A when the system is described by the state |iy). These latter
probabilities are intrinsically quantum mechanical.

The question now is how to take into account the partial information we
have on the system and to simultaneously include in our description the
laws of both quantum mechanics and probability theory.

It is very useful to introduce the density operator p, defined as

p= > D [vr) (Wl (5.5)
k

Given a generic orthonormal basis {|i)}, with ¢ = 1,2,...,n (n is the di-
mension of the Hilbert space H associated with the system), we naturally
associate the operator p with a matrix representation. The corresponding
matrix, known as the density matriz, has elements

Note that it is also customary to call the density operator p in Eq. (5.5) a
density matrix.
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The mean value of any observable A can be computed by means of the
density operator as follows:

n

l n
Tr(pA) = Z | pAli) ZZPk i|Yr) (r| Al), (5.7)

=1 k=11i=1

which is equal to (A), as given in Eq. (5.4). The equality between (5.7)
and (5.4) follows trivially, if we take into account the completeness relation
Y1) = 1. It is also easy to check that the probability p(i) that a
measurement of the observable A gives outcome a;, given by Eq. (5.3), is
equal to

p(i) = Tr(pP,). (5.8)

Therefore, the density operator p completely characterizes the system; from
it we can predict the probabilities of the possible outcomes of any experi-
ment performed on the system.

As discussed in Sec. 2.4, if a system is described by the state vector |¢)
and we measure the observable A, obtaining outcome a;, then the state of
the system immediately after the measurement is

P [1k)
(x| Pilbr)

with P; the projector onto the subspace associated with the eigenvalue a;.

k) = (5.9)

Therefore, if the system is in a mixed state described by the density matrix
p = Y . Pr|¥r)(¥r| and we obtain the outcome a; from the measurement
of A, then the new density matrix after the measurement is given by

l

Pilhw) (Y | P
,; ) [ Wkl = me TR (5.10)

where p(k|i) is the probability that the system is described by the state
vector [¢}), given that the measurement of the observable A resulted in
a;. Elementary probability theory tells us that p(k,:) = p(i) p(k|i), where
p(k,4) is the joint probability to have the state |¢},) and the outcome a;.
Likewise, we have p(k,i) = pg p(ilk) and therefore p(k|i) = p(k,i)/p(i) =
p(i|k) pr/p(i). Observe now that the probability of obtaining result a;,
given that the system was in the state |1)y), is p(i|k) = (¢x|Pi|9). Finally,
we can read p(i) from Eq. (5.8) and insert it in Eq. (5.10), together with
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the expression found for p(i|k). We then obtain

PipP;
I = L 5.11
? = TpR) (511

It is also possible to describe the dynamical evolution of a mixed system
in the density-operator picture. We have

d d ¢
Ep(t) =5 Zpkh/)k(t»@/%(m

:Zpk [( Ve (t >)<wk(t)|+|wk(t)>(%<1/)k(t)|)}. (5.12)

The temporal evolution of the state vectors |iy) is governed by the
Schrodinger equation, which reads

(1)) = k(1) (5.13)

and equivalently, for the dual vector (],

—Zﬁ 2 (Oe(t)] = (Y ()| H. (5.14)
If we insert Eqgs. (5.13) and (5.14) into Eq. (5.12), we obtain
D plt) = = (Hp(t) — pli)H) = = [H, plt)]. (5.15)

This equation, known as the von Neumann equation, governs the temporal
evolution of the density operator p.

As we saw in Sec. 2.4, the state vector |5 (t)) at time ¢ is related to
the state vector |¢y(to)) at time ¢y by a unitary operator U(¢,t): we have
[r(t)) = Ul(t,to)|r(to)). Therefore, the density matrix p(t) at time ¢ is
related to the density matrix p(to) at time ¢ as follows:

l l
p(t) = Y i [Ui(®)) (W) = > pr Ut t0) |9 (to)) (¥ (o) U (¢ o)
k=1

= U(t,to) p(to) UT(t, o). (5.16)

Since, as is clear from the above discussion, the postulates of quantum
mechanics can be reformulated in the density-operator picture, it is com-
pletely equivalent to describe a pure system by means of either the wave
function |1 (t)) or the density matrix p(¢) = [(¢))(¥(t)|]. A nice property
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of the density-matrix picture is that the arbitrary global phase factor (as-
sociated with the wave function) disappears in this formulation: the state
vectors |¢(t)) and ey (t)), with & a real number, give exactly the same
density matrix. More importantly, as we shall see later in this volume, the
density matrix is extremely useful in the description of mixed states and of
composite quantum systems.

The density operator p satisfies the following properties:

1. p is Hermitian. Indeed, if we expand any pure state |¢;) over an or-
thonormal basis {|i)}; that is,

n

k) = > M), (5.17)

i=1

then we have

l ! n
pis = > pilile)welg) =3 e Y el i) (mlj)

k=1 k=1 lm=1
l
=3 peePe, (5.18)
k=1

The last equality follows from the orthonormality condition, which im-
plies (i|l) = 6;; and (m|j) = 0ym;. From the above expression, it is easy
to check that p is Hermitian, since

l
k)~ (k
= ey = . (5.19)
k=1

2. p has unit trace. Using expansion (5.18), we obtain

n l n .
Trp=Y pi=> e | =S p =1 (5.20)
i=1 k=1 =1 1

3. p is a non-negative operator; that is, for any vector |¢) in the Hilbert
space H, we have (p|p|p) > 0. Indeed, we have

l

l
el pled = (ol (D prlndwnl ) o) = D" pellln) 2 = 0. (5.21)
k=1

k=1

It is important to note that Tr p? < 1 for a mixed state, while Tr p? = 1
for a pure state. This is a simple criterion for determining whether a state
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is pure or mixed. To prove it, let us consider the spectral decomposition of
the Hermitian operator p:

p =Y NIl (5.22)
j=1

where the normalized vectors |j) are orthogonal and A; > 0 since p is non-
negative. In the {|j}} basis the matrix representation of p is diagonal and

given by
A0 ...00
0 X ... O
p= . (5.23)
0 0 ...\

Since, as we have shown above, Trp = 1, then we have Ej A; = 1. Using
the spectral decomposition (5.22), it is easy to compute p? and we obtain

PP = AL, (5.24)
j=1
with matrix representation
X0 ... 0
0 A2 ... 0
=1 ... .| (5.25)
0 0 ...\

Thus, we have Tr p? = > )\?. Since > ; A; = 1 and A; > 0, then 0 <
A; < 1. Therefore, Trp? = 1 if and only if A; = 1 for just one j = J
and A; = 0 otherwise. This corresponds to a pure state, described by the
density matrix p = [j){(j|]. It is also easy to check that for a pure state
p? = p. By definition, we have a mixed state if the diagonal representation
(5.22) of p involves more than one pure state and in this case A; < 1 for all
j- Therefore, 7, A% < 37, A; = 1. This proves that Tr p* < 1 for a mixed
state.

Let us discuss the physical meaning of the matrix elements of the density
operator p. From Eq. (5.18) we can see that the diagonal term

2 N
pii = Zpk|c§k)| = Tr(pP;), where P, = [i)(i], (5.26)
k
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represents the probability that the system is left in the state |¢) after mea-
suring the observable whose eigenstates are {|i)}. For this reason we say
that p;; represents the population of the state |i).

The off-diagonal terms p;; represent interference between the states |¢)
and |j). Such interference is present for any state |¢;) of the statistical
mixture containing a linear superposition of |7) and |j). We can see from

Eq. (5.18) that p;; is a weighted sum of the interference terms cz(-k)cyc)*.

We stress that the individual terms cgk)c§»k)* appearing in the sum (5.18)
are complex quantities and, therefore, p;; can be equal to zero even though
the individual terms are not. If p;; # 0, then, even after averaging over
the statistical mixture, a quantum-coherence effect between the states |)
and |j) will remain. For this reason the off-diagonal elements of the density
matrix are known as coherences.

We point out that the distinction between diagonal and off-diagonal
terms; that is, between populations and coherences, depends on the choice
of the basis {|i)}. Actually, since p is Hermitian, non-negative and has unit

trace, it is always possible to find an orthonormal basis {|m)} such that
p= Zam|m><m|, 0 < an, <1, Zam =1 (5.27)
m m

This implies that the density matrix p can always be seen as a statistical
mixture of the states {|m)}, without coherences between them, even though
these states are not, in general, eigenstates of a physical observable.

5.1.1 The density matrix for a qubit

We now apply the density-operator formalism to the qubit. As we have
seen in Sec. 3.1, the pure state of a qubit is represented by a point on a
sphere of unit radius, known as the Bloch sphere. This point is singled out
by the spherical coordinates 6 and ¢ and corresponds to the state

(0, ¢)) = cos§10) + e sin g 1), (5.28)

with |0) and |1) eigenstates of the Pauli matrix o,. The corresponding
density operator is given by

p(0,¢) = |¥(0,¢)) (L(6,¢)| (5.29)



Quantum Information Theory 265

and its matrix representation in the {|0), |1)} basis is

cos? g sin g cos g e~
pl6,6) = | ) . (5.30)
sin g cos g ei® sin g

It is easy to check that p?(0,¢) = p(6, ¢), as it must be for a pure state.

Exercise 5.1 Show that any 2 x 2 Hermitian matrix can be expanded
over the basis {I, 0, 0y,0.}, the coefficients of this expansion being real.

We now consider the density matrix p for the mixed state of a qubit.
Since it has to be a 2 x 2 Hermitian matrix, we can expand it over the basis
{I,04,04,0,} (see exercise 5.1); exercise 5.1); that is,

p = al +bo, + coy +do, (5.31)

the coefficients a, b, ¢, d being real. Since the condition Tr(p) = 1 must be
satisfied for a density matrix, Tr(I) = 2 and Tr(o,) = Tr(oy) = Tr(o,) = 0,
we have a = % We can therefore express p as follows:

1

p=31(I+z0o, +yo,+2z20.) = 3 (5.32)

1+2z x—iy
z+iy 1—=z

with = 2b, y = 2¢, z = 2d. We have seen that a density matrix is
non-negative and therefore p must have eigenvalues A1, A2 > 0. Thus,
we have detp = A\ A2 > 0. We can compute explicitly from Eq. (5.32)
detp = $(1 —|r|?), with r = (z,y,2). We have detp > 0 if and only if
0 < |r] < 1. There is a one-to-one correspondence between the density
matrices for a qubit and the points on the unit ball 0 < |r| < 1, which is
known as the Bloch ball. The vector 7 is known as the Bloch vector. For a
pure state, the density matrix p has eigenvalues Ay = 1 and Ay = 0. Thus,
det p = 0, which in turn implies |r| = 1. We conclude that pure states are
located on the boundary of the Bloch ball.

As an example of mixed state, we consider the case of qubit, which may
point in any direction of the space with equal probability. We integrate
over all the possible directions and obtain

1 2m i cos? & sin 2 cos & e~ ¢
p = — d¢/ dosing | 29 , 2_220
ar Jo 0 sm§cos§ez¢ sin” 3
10
_ 1 1
5{01}517 (5.33)
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where we need the normalization factor ﬁ because fOQW do fow dfsinf = 4.
We note that p? = 11 and therefore Tr(p?) = 4 < 1, as it must for a mixed
state. Taking into account formula (5.32), we can easily see that the density
matrix p = %I corresponds to the centre of the Bloch ball. We say that a
qubit described by this mixed state is unpolarized, because (o;) = 0, for
i =uz,y,z. Indeed, we have

(05) = Tr(poi) = Tr(31o;) = L Tro; = 0. (5.34)
Exercise 5.2 Show that
Tr(oi05) = 268;4, (5.35)
fori,j ==x,vy,z.

For a generic density matrix, the qubit polarization along the direction
singled out by the unit vector n is given by

(on) = Tr(pop) = Tr[3(I+7-0)n-o]. (5.36)

Here, 05, = v - 0, 0 = (04,04,0.) and the density matrix p has been
expressed as in Eq. (5.32). Taking into account the result of exercise 5.2,
we have

(op) = n-7r. (5.37)

Thus, the vector r» parametrizes the polarization of the qubit. As we shall
see in Sec. 5.5, if many identically prepared systems are available; that is,
the same density matrix p describes each system, then we can determine
r (and therefore the density matrix p) by measuring 7o - o along three
independent axes.

Finally, we note that the decomposition of the density matrix into en-
sembles of pure states (Eq. (5.5)) is not unique. For example, let us consider
the density matrix

p = 2100+ 1)1l (5.38)

This density matrix is obtained if the system is in the state |0) with prob-
ability 2 or in the state |1) with probability 4. However, this is not the
only ensemble of pure states giving the density matrix (5.38). There are in-
finitely many other possibilities, for instance we can consider the situation
in which the states

ja) = /2100 /310, ) = /2100 - /E (5.30)
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are prepared with equal probabilities p, = pp = % We have

p = gla)al + 3 [b){B] = F10)(0] + 3 [1)(1]. (5.40)

A further example is provided by the density matrix p = %I . It can cor-
respond to the decomposition (5.33), but also to the statistical mixture of
equal portions of the states |0), and |1),, where these states are the eigen-
vectors of the matrix o5, with n an arbitrary unit vector. For instance,
considering 1 = (1,0, 0), we obtain

p = 310001+ § 10,011 = § 1001+ FI( = 41 (541)

Since the probabilities of the different outcomes of any conceivable experi-
ment are governed by the density matrix p (see Eq. (5.8)), it is impossible
to distinguish between different mixtures leading to the same p. Therefore,
we say that, in contrast to the case of a pure state, our information on the
system is incomplete.

Exercise 5.3 Show that two density matrices for a qubit commute if
their Bloch vectors are parallel.

5.1.2 Composite systems

Let us consider a pure state of a bipartite system. As we saw in Sec. 2.5,
this state resides in the Hilbert space H = H1 ® Ho, which is the tensor
product of the Hilbert spaces associated with the subsystems 1 and 2. We
can therefore express a generic state 1)) € H as

[v) = Z Cia |1)1]0)5,  with Z lcial? = (5.42)

7,0

where {|i);} and {|a),} are basis sets for H; and Hs, respectively. The
corresponding density operator is

= [}l = Y ciallplinlas 1 (i)

i,a j,8

=D piays lidilads 181, (5.43)

iL,a 7,0

with the matrix elements of p defined by

Piaiis = 1(il o{alpli)y 1B)2- (5.44)
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Let us assume that the total system is described by the density matrix
p and we wish to compute the mean value of an operator A; acting only on
subsystem 1. First of all, we trivially extend the operator A; to the entire
Hilbert space ‘H by defining the operator

A=A, (5.45)

with Is the identity operator in Hs. Thus, we have

(A) = Te(pA) = 31 (bl o(1lpAlRY, (1), (5.46)
kyy
- Z (120122 piasgolitalad 1l (81) (41 @ L) k)1 1)
h,a .8

Taking into account the orthonormality relations |(k|i); = i, o(Y]|a)y =
dary and o(B|y)y = 4, we can remove three out of the six sums appearing
in the above equation. This gives

= Z Piasja 1(J] A1]i)1- (5.47)

;0
It is now useful to introduce the reduced density matrix

p1 = Tryp, (5.48)

where Tr, denotes the partial trace over subsystem 2:

Tryp = 22<04|P|04>2- (5.49)

[e3

We note that it is also possible to define similarly a reduced density matrix
for subsystem 2:

py = Tryp = Z1<Z|P|Z>1 (5.50)

The matrix elements of p; in the {|i),} basis are given by
(p1)ij = 1lilorld)y = D piasja- (5.51)
After insertion of this equality into Eq. (5.47), we obtain

(A1) = Z1<i|91|j>1 1l Awli), = Zl<i|PlA1|i>1 = Tr(p1A1). (5.52)

7 i
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Therefore, it is possible to compute the expectation value of an operator
acting only on subsystem 1 as if the system were isolated and described by
the reduced density matrix p;. We can conclude that p;, obtained after
partial tracing over subsystem 2, describes the state of subsystem 1.

Exercise 5.4 Show that the reduced density matrix is Hermitian, non-
negative and has unit trace.

It is important to point out that, even though p corresponds to a pure
state of the composite system, it is not assured that the reduced density
matrices p; and po describe a pure state. A very significant example is
provided by the states of the Bell basis, introduced in Sec. 3.4.1. For
instance, let us consider the state [¢p~) = ﬁ(|01> —|10)). This state has
density operator

p = 1(]01)(01] + [10)(10] — [01)(10] — [10)(01}). (5.53)

Its matrix representation in the basis {|00), |01), |10), |11)} is given by

0 0 0 O
0 1-1 0
P=z2lp_1 1 0 (5:54)
0 0 0 O
We can readily check that
pr = Tryp = 1(0)(0] + [1)(1]) = L1, (5.55)
Indeed, we have
p1)oo = poosoo + poro1 = 0 + 3 = 3,
P1)or = pooiio + por;11 = 0 +0 = (5.56)

10 = p10;00 + p11;00 = 0 +0 =

V- o O wi=

11 = p1o;10 + p11;11 = %-FO =

IThe temporal evolution of the density matrix p(t) is governed by the von Neumann
equation (5.15). At any given time, we have seen how to compute pi(t) from p(¢).
However, the problem of finding an equation describing the evolution of pi(¢) is much
more complex. We shall discuss this issue in Sec. 6.2.
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Likewise, we obtain py = %IQ. Its matrix representation is given by

p2)o0 = Poo:00 + pro;10 = 0+ 3 =
p2)
p2)10 = pot;o0 + pi1;10 = 0 +0 =
p2)

01 = poo;o1 +pio;11 = 0+0 =

(
(

57
( (5.57)
(

V= o O =

11 = pPot;01 + pP11;11 = %—1—0 =

We note that the same expressions for the reduced density matrices are
also obtained for the other states of the Bell basis. Thus, p; and ps clearly
correspond to mixed states: we have p} = p = 11 and therefore Tr(p?) =
Tr(p3) = 3 < 1. As is easy to check, this example also shows that the
density matrix p for the entire system is not equal to the tensor product
p1 ® po of the reduced density matrices. This means that the quantum
correlations between systems 1 and 2 are not included in p; ® pa.

It is instructive to discuss a simple argument illustrating that the non-
locality in the EPR phenomenon cannot be used to transmit informa-
tion faster than light. Assume that Alice and Bob share the Bell state
[v~) = ﬁ (10)[1) —[1)]0)) and Alice wishes to employ it to instantaneously
communicate a message to Bob, who may be located arbitrarily far away.
We know that it is also possible to write |¢p~) = ﬁ(|0>$|1>$ — [1)2]0)<).
Thus, it would be tempting for Alice to measure o, or o, on her half of a
Bell state to communicate a bit of classical information. That is to say, she
would measure o, to transmit 0 and o, to transmit 1. In both cases, Alice
obtains outcomes 0 or 1 with equal probabilities % Thus, her measurement
generates the global density matrix

p® = 3(j0)(0] @ [1){1] + [1)(1] @ [0)(0]), (5.58)
if she measures o, or

Pt = 1(10), (0l ® [1), (1] + (1), (1] @ 0}, ,(0]), (5.59)

if she measures o,. In the first case, the reduced density matrix for Bob
is pp = Tr, p¥), in the latter pp = Tr, p®) (here Tr , denotes the trace
over Alice’s degrees of freedom). In any instance, it is easy to check that
pPB = %I . Since no measurement performed by Bob can distinguish between
the two different preparations of the same density matrix pp, the message
sent by Alice is unreadable.

Exercise 5.5 Consider the teleportation protocol described in Sec. 4.5
and show that Bob cannot receive any information on the qubit to be
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teleported before Alice sends him the classical bits.

Exercise 5.6 Show that for a pure bipartite separable state the reduced
density matrices p; and ps correspond to pure states and the total density
matrix of the system is given by p = p1 ® pa.

5.1.3 * The quantum copying machine

As an example application of the density-matrix formalism in quantum in-
formation, we shall now describe the copying machine of Buzek and Hillery.
We saw in Sec. 4.2 that it is impossible to create a perfect duplicate of an
arbitrary qubit. This is the content of the no-cloning theorem. However,
such a theorem does not forbid the existence of a quantum copying machine
that approzrimately copies quantum mechanical states. Buzek and Hillery
devised a machine that produces two identical copies of the original qubit,
the quality of the copies being independent of the input state. It can be
shown that the quantum copying machine of Buzek and Hillery is optimal,
in the sense that it maximizes the average fidelity between the input and
output states (see Gisin and Massar, 1997 and Bruf} et al., 1998). The
fidelity is a measure of the quality of the copy and is defined by

F = Wlpl), (5.60)

where [¢)) is the state to be copied and p is the density matrix describing
the copies (see Sec. 6.5.8 for a general discussion of the fidelity of quan-
tum motion or quantum Loschmidt echo). We have 0 < F < 1 and the
maximum value F' =1 is taken when p = [¢)(¢)|. We note that Eq. (5.60)
generalizes the definition of fidelity of two pure states |¢),|¢), given by
F = |(¢|$)]? (see exercise 3.1). If p = >, pr|dr) (x|, then Eq. (5.60) gives
F =%, piFy, where Fy, = |(¢|¢x)|>. Therefore, F' is the weighted sum of
the pure-state fidelities FJ.

Let us describe the workings of the Buzek—Hillery copying machine.
Given a qubit in a generic unknown pure state

l¥) = al0) +B[1), (5.61)

we consider the copying network shown in Fig. 5.1. This circuit can be
decomposed into two parts: (i) the preparation of a specific state of the
quantum copier and (ii) the copying process. It can be seen from Fig. 5.1
that only part (ii) depends on the state |1)) to be copied. Let us first look
at the preparation stage. The gates labelled by 6; denote the application
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of the rotation matrices

(5.62)

Ry(~26;) = [ cosb; sm@i],

—sin#; cosb;

where, as discussed in Sec. 3.3.1, R, (—26;) corresponds to a counterclock-
wise rotation through an angle —26; about the y-axis of the Bloch sphere
and the angles 6; are chosen as

cos20; = %, cos 20y = %, cos 203 = % (5.63)

At the end of the preparation stage, the two qubits initially in the state
|00) are transformed into the state vector

|®) = % (2/00) + [01) + [11)). (5.64)

It can be checked that the copying part of the circuit in Fig. 5.1 transforms
the state [1)|®) into

[40)[0) + [A1)|1), (5.65)

with
[A0) = ay/2 [00) + 8y/2 (110) + Jo1)),
A1) = 84/211) + ay/3 (110) + [01)).

Since the three qubits are now entangled, we must trace over two of
them to obtain the (mixed) state describing the third. Let us first trace
over the bottom qubit of Fig. 5.1, obtaining the density matrix

(5.66)

|Ao) (Aol + A1) (Aa]. (5.67)

Then, by further tracing over one of the first two qubits, it is possible to
check that each of the two qubits at the output of the quantum copier
(the two top qubits in Fig. 5.1) is described by the same reduced density
operator

p =3l +g1 (5.68)

It is easy to check that, independently of the initial state |1}, the (op-
timal) fidelity of the copy p is given by

F = @lply) = @G )@l + 5 D)e) = 3. (5.69)
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v e
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M
10> 192 | NP o
preparation 3 copying

Fig. 5.1 A quantum copying network: two imperfect copies of the state |t¢), described
by the density matrix p, are recovered at the output. The 6;-symbols stand for the
rotation matrices Ry(—20;) defined by Eq. (5.62). Note that, to simplify notation, on
the left-hand side of the circuit we show the state vectors instead of the corresponding
density matrices |¢) (1| and |0)(0].

Exercise 5.7 Check that the quantum circuit in Fig. 5.1 produces two
copies described by the density matrix (5.68).

5.2 The Schmidt decomposition

In this section, we shall demonstrate the existence of a very useful de-
composition, known as the Schmidt decomposition, for any pure state of a
bipartite quantum system.

Theorem 5.1 The Schmidt decomposition theorem: Given a pure state
[y € H ="H1 ®Hz of a bipartite quantum system, there exist orthonormal
states {|i);} for Hy and {|i")y} for Ha such that

k
) = S VB s = VBT )y + o+ VR R, (5.70)
i=1

with p; positive real numbers satisfying the condition Zle pi = 1.

It is important to stress that the states {|i);} and {|i');} depend on the
particular state [1) that we wish to expand.

Proof. Given an arbitrary state vector |¢) in H, we can always write

) = D ciali)ila),, (5.71)

(e
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with {|¢),} and {|a),} basis sets for H1 and Ha, respectively. We can express
this decomposition as
) =Y lil) (5.72)

where we have defined

D)y = Y ciala),. (5.73)

Of course, in general, these states [i), are neither orthogonal nor normalized. To
prove the theorem, we must choose a basis {|i);} in which the reduced density
matrix p: is diagonal:

p1 = Zpi |2}y 4(il. (5.74)

Since p1 is a density matrix, it is Hermitian, non-negative and has unit trace.
Thus, we have p; > 0 and ), p; = 1. The expansion (5.74) involves only terms
with p; > 0, corresponding to the non-zero eigenvalues of p1. We can also compute
p1 from the partial trace

T, (o) (1) = (ZI D2 1(7121)
:Z| 114 Z k| 22]|k2—2| 11( Z J|k>22<k|>
= ZQﬂZQille (5.75)

p1

where {|k) }2 is an orthonormal basis for Hz and the last equality follows by taking
into account the completeness relation ), |k), 5(k| = I2. The equality between
(5.74) and (5.75) requires 4(j|i), = pidi;. Thus, the vectors |i), are orthogonal
and can be normalized as follows:

i)y = )2 (5.76)

After inserting (5.76) into (5.72), we obtain the Schmidt decomposition (5.70).
Thus, we have explicitly constructed the orthonormal states {|i),} and {|i'),}
which allow us to write down the Schmidt decomposition.

We can also take the partial trace over the first subsystem, obtaining

p2

Ty (W) () = Ty (D0 Ve 101112 1lat7'])

Zpi 1) 5(d]. (5.77)
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Therefore, the reduced density matrices p; and ps have the same non-
zero eigenvalues. Their number is also the number & of terms in the Schmidt
decomposition (5.70) and is known as the Schmidt number (or the Schmidt
rank) of the state |¢). It is clear that a separable state, which by definition
can be written as

) = 16)11€); (5.78)

has Schmidt number equal to one. Thus, we have the following entangle-
ment criterion: a bipartite pure state is entangled if and only if its Schmidt
number is greater than one.

We stress that the Schmidt number is a criterion for entanglement, not
a measure of entanglement. In order to clarify this point, let us consider
the following two states:

167) = 25 (100210} + [1)1]1), ).
[¥) = V1—=2€2(0)1|0); +€[1)1[1)5 + €[2);]2)s,

with € < 1. It is clear that the Schmidt number of the Bell state |[¢T) is 2;
that is, it is smaller than the Schmidt number of |¢), which is 3. On the
other hand, one sees intuitively that the entanglement content of a Bell state
is much larger than that of the state |1)) since we have assumed € < 1. This

(5.79)

intuition can be formalized by introducing, as a measure of entanglement, a
quantity borrowed from condensed matter physics, the participation ratio:

e— 1 (5.80)

- :
2z Pzz

This quantity is bounded between 1 and k: it is close to 1 (that is, to
separability) if a single term dominates the Schmidt decomposition, whereas
& = k if all terms in the decomposition have the same weight (p; = --- =
pr = 1). We have £ = 2 for |¢T), which is larger than the value { ~ 1+ 4¢?
obtained for the state |¢).

Exercise 5.8 Show that there are states

W) = Y capyla)ilB)aln)s (5.81)

B,y

that cannot be written as

RSN AUNINION (552
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This means that the Schmidt decomposition cannot be extended to systems
composed of more than two parts.

5.3 Purification

Given a quantum system described by the density matrix p1, it is possible to
introduce another system, which we call system 2, such that the state |¢)) of
the composite system is a pure state and p; = Try(|10)(¢|). This procedure,
known as purification, allows us to associate a pure state |1) with a density
matrix p;. We note that the added system 2 does not necessarily have
a physical significance. We just have a useful mathematical tool at our
disposal to work with pure states instead of density matrices.

A generic pure state of the global system 1+ 2 is given by

) = Zcz‘a |1)1]e)s, (5.83)

with {]é);} and {|a),} basis sets for the Hilbert spaces associated with the
subsystems 1 and 2. The corresponding density matrix is

=22 cialislidila)y 4ilo(0] (5.84)
i, 4,0

Given a generic density matrix for system 1,

pr =3 (p1)ralk)y 1 (11, (5.85)

k,l
we say that the state |¢)) defined by Eq. (5.84) is a purification of p; if

o= Ty (j00) = 201 (3 s s o081

¥ La g,8

=D D ey lidiadil, (5.86)
v id

where we have used the orthonormality relations o(8|v), = dgy and
o(vlayy = 04a. The equality between (5.85) and (5.86) implies

(p1)ij = Y Cin €}y (5.87)
ol

Here the matrix elements (p1);; are given and we wish to determine the
coefficients ¢;y. It is clear that system (5.87) always admits a solution,
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provided the Hilbert space of system 2 is large enough (we shall show below
that it is sufficient to consider a system 2 whose Hilbert space dimension is
the same as that of system 1).

As an example, we consider a qubit whose density matrix p; is known.
It turns out that the addition of a second qubit (known as an ancillary
qubit) is sufficient for the purification of the density matrix p;. Indeed, in
this case the condition (5.87) gives the following set of equations:

(P1)oo = cooCho + Co1€015
(p1)or = coocip + corciy = (p1)Tos (5.88)
(p1)11 = c10€)y + 1163,

We can select a solution to this system if we put cg; = 0. It is then easy to
find that

coo = v/ (p1)oo, co1 =0,

= M _ \/(Pl)oo(ﬂl)n —(p1)o1|? (5.89)
€10 = , Ci1 = X
(p1)oo (p1)o0

Thus, a possible purification is given by

100 0),10), ;% 11),10),

N \/(m)oo(ﬂl)ll —[(p1)o1]? 11),]1),.  (5.90)
(p1)oo

We point out that, given a two-qubit system, it is possible to generate any
density matrix p; for one of the two qubits by means of unitary operations
on the two-qubit system. For this purpose, it is sufficient to prepare the
state (5.90). Qubit 1 is then described by the desired density matrix p1,
obtained after tracing over qubit 2.

We note that if we express the reduced density matrix using its diagonal
representation,

pr = Y pilih il (5:91)

it is sufficient to consider a system 2 having the same state space as sys-
tem 1. Indeed, a purification for the density matrix (5.91) is given by

)= 3 Va1, (592
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The close connection between purification and Schmidt decomposition is
self-evident.

Exercise 5.9 Find a purification for the density matrix describing the
state of two qubits (Hint: use two ancillary qubits and assume ¢10 = ¢13 =
C14 = €23 = C24 = 34 = 0).

5.4 The Kraus representation

Let us consider a bipartite system 1 + 2. The system undergoes a unitary
evolution and we wish to describe the evolution of subsystem 1 alone. We
assume that initially the two subsystems are not entangled (we shall see
later in this section that there is no lack of generality in this assumption)
and described by the density matrix

pra = p1 @10}, (0. (5.93)

Namely, subsystem 2 is in a pure state, which we call |0),. There is no loss
of generality in the assumption that subsystem 2 is initially in a pure state.
As we saw in the previous section, if this is not the case, we can enlarge the
Hilbert space of subsystem 2 in order to purify it. The temporal evolution
of the total system is governed by the unitary time-evolution operator U,
which leads to the new density matrix

pra = Upr2U' = U(p1 @ 10), ,(0[) UT. (5.94)

The quantum circuit implementing this transformation is shown in Fig. 5.2.
As explained in Sec. 5.1.2, since we are interested in the new density matrix
py describing subsystem 1, we must trace over the second subsystem:

Py = Try(ple) = Try [U(Pl ® [0), 2<0|)Uq

22<k|U|0>2 P 2<0|UT|k>2, (5.95)
k

where {|k),} is a basis set for the Hilbert space H, associated with subsys-
tem 2 and ,(k|U|0), is an operator acting on the Hilbert space H; associated
with subsystem 1. If we define the Kraus operators

E, = ,(k|U|0),, (5.96)
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then we can rewrite Eq. (5.95) as

Py =Y EypEj. (5.97)
k

Since U is unitary, the operators E satisfy the property

STEE, =Y ,0[UT|k), o (k|UI0), = ,0|UTUI0), = L, (5.98)
k k

where I; denotes the identity operator in the Hilbert space H;. Note that
we have used the completeness relation ), |k), o(k| = I>. Equation (5.97)
defines a linear map from linear operators to linear operators:

Sip—py = ZEk P1 Eli (5.99)
k

If the completeness relation (5.98) is satisfied, map S is known as a quan-
tum operation or a superoperator and Eq. (5.97) is known as the Kraus
representation (or the operator-sum representation) of the superopera-
tor S. Note that, if U(t) denotes the time-evolution operator from time
0 to time ¢, then Fj depends on time and Eq. (5.99) can be written as
S(t) : p1(0) — p1(t) = Dok E,(t) p1(0) E,];(t), where p,(t) is the density
matrix describing subsystem 1 at time ¢.

Py

Py
U

10>

Fig. 5.2 A quantum circuit implementing the transformation (5.94). The state p is
obtained after partial tracing over the other subsystem (lower line in the figure) the

overall density operator U(p; ® |0)(0])UT.

A superoperator maps density operators to density operators, since:
1. p} is Hermitian if p; is Hermitian:

;
(Pll)T = (ZEkplEli) = Z(Ezi)TPIE;L = ZEkplE); = ol
k k

k
(5.100)
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2. p} has unit trace if p; has unit trace:

= Tr(py Y E[E,) = Tr(py) = 1; (5.101)
k

3. p} is non-negative if p; is non-negative:

(Ylprle), = Z <¢|EkP1E V) 21 eklpiler); > 0, (5.102)
k

k

where |¢); is any vector in H; and |¢px); = E};|1p>1.

Unitary representation. So far, we have shown that the unitary evolu-
tion of a composite system naturally gives rise to an operator-sum represen-
tation describing the evolution of a subsystem. We now tackle the converse
problem: given a Kraus representation for the evolution of system 1, we
shall show that it is possible to introduce an auxiliary system 2 so that
the evolution of the total system 1 + 2 is unitary. In this manner, we con-
struct the unitary representation corresponding to a given superoperator.
We define an operator U, acting as follows on states of the form |t/),|0),:

Ulg)110), = ZEk|¢>1|k>2a (5.103)
k

where {|k),} is an orthonormal basis for subsystem 2, whose dimension
is given by the number of Kraus operators appearing in the operator-sum
representation. The operator U preserves the inner product. Indeed, for
arbitrary states [¢); and |¢),; we have

LWl 16,10} = (D2 wIE] o(kl) (D Euleédl0), )
l

k

S T LWIELE6), = 1(W]e),, (5.104)

k

where we have used the orthonormality relation o(k|l), = dx; and the com-
pleteness relation (5.98). As the operator U preserves the inner product
when acting on the subspace whose states are of the form [¢)),|0),, then it
can be extended to a unitary operator acting on the entire Hilbert space
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H; ® Hs of the joint system.?

Composing superoperators. Two superoperators Sy and Sp can be
composed to give a new superoperator S = SpSa, defined by S(p1) =
Sp(Sa(p1)). If S4 describes the evolution of the density matrix for system 1
from time tg to time t; and Sp from t; to tg, then S = SpS4 describes the
evolution from tg to t2. It can be shown that a superoperator is invertible
if and only if it is unitary. Thus, superoperators are a semigroup instead of
a group. Physically, this means that an arrow of time has been introduced
for subsystem 1. We can describe the evolution from ¢g to t; > ty by means
of a superoperator but not from t; to tg. There is a loss of information
from system 1 to system 2 (known as the environment) and we cannot
run the evolution of system 1 backward if we know its state but ignore the
state of the environment. This phenomenon is known as decoherence and in
the next chapter we shall show that superoperators provide a very general
theoretical framework for its description.

There is a freedom in the operator-sum representation; that is, different repre-
sentations can give rise to the same superoperator. The following theorem holds:
two superoperators S(p1) = >, EkplE,Z and S'(p1) =3, kalF];r coincide if and
only if there exists a unitary matrix W such that F; = ; Wi; Ej. The proof of
this theorem can be found in Schumacher (1996).

We note that, in order to build a unitary representation of a superoperator,
the dimension of the Hilbert space H2 must be at least as large as the number
of operators F, appearing in the Kraus representation. If the Hilbert space H;
has dimension N, it is possible to prove that all superoperators S(p1) can be
generated by an operator-sum representation containing at most N? operators
E,, (see, e.g., Preskill, 1998a). Therefore, it will be sufficient to consider a Hilbert
space Hz of dimension N2.

We may also ask how many real parameters are required to parametrize a
generic superoperator S : p1 — p} on a Hilbert space of dimension N. A su-
peroperator maps a density operator into another density operator; that is, an
N x N Hermitian matrix to another N X N Hermitian matrix. A basis for the
space My of the N x N Hermitian matrices has N? elements. Therefore, the

2Tt is easy to verify that the unitary transformation (5.103) really induces an operator-

sum representation on subsystem 1. Indeed, the evolution of a pure state p1 = [¢); (¥
is as follows:

p1 = ph = Try(Ul),10)y (@], 01UT) = ST By ) (WIEL = > By p B}
k k

And since a generic density matrix can be expressed as an ensemble of pure states,
p1 = Y_; Pilthi); 1(¥i|, we recover the Kraus representation (5.97) for arbitrary pi.
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most general linear transformation acting on the space My has (N?)? = N*
free real parameters. We should then take into account the completeness rela-
tion >, E};E,C = I, which gives N? constraints for these parameters (note that
we have N? constraints and not 2N? since the terms EkEZ are Hermitian; in
other words, the Hermitian conjugate of the completeness relation is again the
same completeness relation). Hence, a generic superoperator is parametrized by
N* — N? real parameters. For instance, in the case of a single qubit (N = 2) we
need 12 real parameters, while in the two-qubit case (N = 4) we need 240 real

parameters.

We may now state the following fundamental theorem (for a proof see
Schumacher, 1996):

Theorem 5.2 The Kraus representation theorem: 4 map S : p1 — pj
satisfying the following requirements: it

1. is linear; that is,

S(p1p1 + p2p2) = P1S(p1) + p2S(p2), (5.105)

2. preserves hermiticity,
3. preserves trace,
4. is completely positive,

has an operator-sum representation (5.97) and a unitary representation
(5.108) on a larger Hilbert space.

We say that S is positive if, for a non-negative p1, pj = S(p1) is also
non-negative. The complete positivity of S is a stronger requirement. It
means that, for any extension of the Hilbert space Hi to Hi ® Hg, the
superoperator S ® Zg is positive. That is, if we add any system F that has
a trivial dynamics (the identity Zp means that no state of F is changed),
independently of the dynamics of system 1, the resulting superoperator
S ® Zg must be positive. This requirement is physically motivated since, in
general, it cannot be excluded that the two systems are initially entangled.
If this is the case and we call p;g the density matrix corresponding to
the initially entangled state, then pip = (S ® Zg)(p1g) must be a valid
density matrix. This implies the positivity of S® Zg for any E, namely the
complete positivity of S.

Exercise 5.10 Consider the state

Whie = 75 (101115 + 1)110)5)- (5.106)
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Let p; denote the density operator for the first qubit and show that the
transposition operator

T(p) = pi (5.107)

is positive but not completely positive. For this purpose, it will be sufficient
to show that 7 ® Zg is not positive.

The Kraus representation theorem tells us that, if the evolution p}] =
S(p1) of the density matrix p; preserves hermiticity and trace, is linear
and completely positive, then this evolution can be realized by the unitary
transformation (5.103), acting on a larger Hilbert space H1 @ Hz. Note that
in (5.103) subsystems 1 and 2 are not initially entangled. Thus, if we are
only interested in the evolution of the density matrix p;, there is no lack
of generality in assuming that subsystem 1 is not initially entangled with
subsystem 2.

Examples. As a simple example illustrating the Kraus representation, we
now consider two single-qubit subsystems 1 and 2, with initial density op-
erator given by pi2 = [0)5 5(0| ® p1, whose matrix representation is

p1 0
- , 5.108
P12 [ 0 0] ( )

where p; and 0 are 2 x 2 submatrices and all elements of 0 are zero. Note
that we have taken the qubit in the state |0), as the most significant qubit
to obtain a simple block representation for the matrix (5.108). The evo-
lution of the global system 1+ 2 is governed by a unitary 4 x 4 matrix U
and we obtain the new reduced density matrix p) after tracing over the

degrees of freedom of subsystem 2 (see the quantum circuit implementing
this transformation in Fig. 5.2). We have

C D 0 o|| Bt Dt )
= Ap AT +Cp CT, (5.109)

py = Tr, (Upi2U') = Tr, (

where the unitary matrix U has been expressed in terms of the 2 x 2 subma-
trices A, B, C and D. If we require that the transformation maps density
matrices to density matrices, then Tr(p}) = Tr(p1(ATA+ CTC)) = Tr(p1)
for any p;. It follows that we must have

ATA+Cie = 1. (5.110)
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Thus, we have explicitly constructed a Kraus representation for a single
qubit, with the Kraus operators A and C satisfying property (5.98).

We point out that, in the most general case for a single qubit, the
number of Kraus operators appearing in the operator-sum representation
is N2 = 4 (N = 2 being the dimension of the Hilbert space for a single
qubit), corresponding to two qubits for subsystem 2. For instance, if we
consider the unitary evolution

Ulg)110)y = /1 —pLifeh),]0),
AR [@n 1) + ()11 12} + (@ )il6) 13}, (5.111)

with 0 < p <1, then the four Kraus operators are given by Ey, = 5(k|U|0),.
We readily obtain

Ey = \/1-pli, E1 = \/3p(02)1, B2 = \[ip(oy)1, B3 = \/2p(02)1,

(5.112)
and it is easy to check that the operators E, satisfy the normalization
condition ), E;Ek = I;. The evolution of the reduced density matrix ps,
corresponding to the unitary evolution (5.111), is given by

3
p1— py = ZEkplE};
k=0
= (L=p) I+ p [(@)1p1(0a) + (@)1pr(oy ) + (@)1 (021 .
(5.113)

This example corresponds to the so-called depolarizing channel and will be
discussed, together with several other examples of Kraus representations
for a single qubit, in Chap. 6.

5.5 Measurement of the density matrix for a qubit

We saw in Sec. 3.1 that the coordinates (z,y, z) singling out a pure state
on the Bloch sphere can be measured, provided a large number of states
prepared in the same manner are available. We now show that the same
conclusions hold for mixed states. Following Sec. 5.1, we write the density
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matrix for a qubit as

1

p =73 (5.114)

1+2z x—iy
z+iy 1—z '
The measurement procedure is shown in Fig. 5.3: a unitary transforma-
tion U maps p into a new density matrix p’ = UpU' and the detector D
measures o,. The possible outcomes of this measurement are ¢ = 0,1 (we

associate ¢ = 0 with 0, = +1 and i = 1 with 0, = —1), obtained with
probabilities

pi = Tr(p'Py), (5.115)

where the projector operators P; read in the {|0),|1)} basis as follows:

10 00
ne[10 m=[00 e
We can also write
pi = Te(UpU'R,) = Tr(pUTR,U) = Tr(pQs), (5.117)

where we have defined the new operators

Qi =U'pU. (5.118)

v U (]

Fig. 5.3 A schematic drawing of the measurement of the density matrix. The unitary
transformation U comes before a standard measurement performed by the detector D.

In order to measure the coordinate z, we take U = I, so that Qg = Py
and Q1 = P;. It is easy to compute pg, p1 and to check that

Po—p1 = 2. (5.119)

To compute z, we take U = R,(—7); that is, the Bloch sphere is rotated

clockwise through an angle 7 about the y-axis (we follow the definition

given in Sec. 3.3.1 for the rotation matrices). In this manner, the x-axis
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is transformed into the z-axis and the coordinate x can be computed by
measuring o,. Hence, we consider

U = Ry(—g) =L {_1 ﬂ (5.120)

and therefore

11 1 -1
Qo =U'RU =1 [1 J, Q, =UPU = %[ ) } (5.121)

We can readily check that
Po—p1 = T. (5.122)

Likewise, we can compute y. We take

_p( Ty b

U = Rx( 2) = [Z 1] (5.123)

and therefore
14 1 —i
_ 1 -1

QO 2 |:—Z 1:| ) Ql 2 |:Z 1:| ) (5124)
which implies

P1—Po = Y- (5.125)

Of course, we must repeat the entire procedure (preparation of the initial
state, unitary transformation and measurement) a large number of times
to obtain good estimates of x, y and z. We note that the method can be
generalized to measure density matrices of larger dimensions.

5.6 Generalized measurements

A generalized measurement is described by a set {M;} of measurement
operators, not necessarily self-adjoint, that satisfy the completeness relation

S oMM, =1 (5.126)

If the state vector of the system before the measurement is |¢)), then with
probability

pi = (WIMIM[) (5.127)
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the measurement gives outcome i and the post-measurement state of the
system is

Mily)
\ (WM M)

We note that the completeness equation (5.126) assures the fact that the
probabilities sum to unity; that is, >, p; = ZK@MMJMA@/}) = 1. We note
that the projective measurements described in Sec. 2.4 are a special case of
generalized measurements, in which the operators M; are orthogonal pro-
jectors; that is, M;r = M, and M;M; = 6;;M,. Therefore, in this case,
the completeness relation becomes ), M, = I. It turns out that projective
measurements together with unitary operations are equivalent to general-
ized measurements, provided ancillary qubits are added. This simply means
that generalized measurements are equivalent to projective measurements
on a larger Hilbert space. This statement is known as Neumark’s theorem
and is discussed, e.g., in Peres (1993).

In the following, we show that, if we restrict our attention to a subsys-
tem of a given system, a projective measurement performed on the system
cannot in general be described as a projective measurement on the subsys-
tem. Let us consider the unitary evolution (5.103) of a composite system
1+ 2, initially in the state [¢),]0),:

i) = (5.128)

Ulg)110), = ZEk|¢>1|k>2a (5.129)
k

where {|k),} is an orthonormal basis for subsystem 2. A projective measure-
ment, described by the projectors P; = Iy ® |i)y o(i|, with >, P, = I ® I,
gives outcome 7 with probability

pi = Te(pioPy) = Te( 2 Bl lk)a (0l ok [EL 1), o0i])

kK’

= ((QIE]E;[¢),, (5.130)

where p12 = Ul1)),]0)5 ;(¥|(0|UT and the Kraus operators E, satisfy the
condition ), EZLEz = I, and, in general, are not projectors. Therefore, a
standard projective measurement performed on the system can be described
as a generalized measurement on subsystem 1.
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5.6.1 * Weak measurements

An interesting kind of generalized measurement is the weak measurement;
that is, a measurement that disturbs the state of the system very little.
In this section, following Brun (2002), we provide a concrete example of
weak measurement, obtained from a projective measurement performed
on an environment weakly coupled to the system. We assume that both
the system and the environment can be described as qubits. The system
qubit is initially in a generic state |0)g + B|1)g, while the environment
qubit is in the state |0). We also assume that the evolution of the two
qubits is described by the unitary transformation {[R.(0)]s ® Ig}(cos 6l —
1sinf CNOT), with 8 < 1 (note that in the CNOT gate the system acts as
the control and the environment as the target qubit). After this, the two
qubits are (up to an overall phase factor exp(i§)) in the state

|¥) = (a]0)g + Beost|1)4)[0); —iBsin |1)g[1) . (5.131)

If we measure the environment in the z-basis, we obtain outcomes 0 or 1
with probabilities pg = |a|? +|8|? cos® 6 ~ 1 —|3]?6% and p; = |3]?sin? 6 ~
|3]20% < 1. In both cases, the system and the environment are no longer
entangled after the measurement. If the outcome 0 occurs, then the system
is left in the state

a|0) +Beosfl)g a(l i %|5|292)|0>5 +6<1 - %|a|292) Ds-

Vla? +18]% cos? 0
(5.132)

In this case, the system is weakly perturbed and the (weak) information
obtained from the measurement of the environment is that it is now more
probable that the system is found in the state |0)g. If instead the outcome
1 is obtained from this measurement, then the system is left in the state

|T/Jo>s =

[1)g = [1)g. (5.133)

Therefore, in this example the measurement is weak in the sense that most
of the time (with probability pg ~ 1 — |3]|?6?) the system is weakly per-
turbed. However, in rare occasions (with probability p; ~ |3]26%) the
system changes abruptly (in the language of quantum trajectories, to be
discussed in Sec. 6.6.1, we say that a jump occurs). We stress that the
system—environment interaction plus the projective measurement acting on
the environment can be conveniently described as a generalized measure-
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ment acting on the system, with the measurement operators
My = 10)4 4(0] + cos B [1) ¢ 4(1], M, = sinf|1)4 o(1], (5.134)
satisfying the completeness relation M;{M0 + M}LM1 = Ig.

Exercise 5.11 Show that, if the weak measurement (5.134) is repeated
a very large number of times, then the effect is the same as a strong mea-
surement: given a state |¢)g = «|0)g + (|1)g, the system is at the end
left in the state |0)g with probability py & |a|? or in the state |1)g with
probability p; ~ |3]?.

It is important to point out that the state of the system after the mea-
surement of the environment qubit depends on the selected measurement
basis. Let us consider, for instance, what happens if we measure the envi-
ronment in the z-basis. For this purpose, it is useful to rewrite the state
(5.131) as follows:

0) = 5 (al0)s+Be 1) ) 1+) o+ F5 (al0)s + e 1) ) =) (5:135)

where |£) 5 = $(|O)E +[1)y) are the eigenstates of (0,)g corresponding
to the eigenvalues +1. The two measurement outcomes (0, )p = 1 leave
the system in the new states

lhi)g = al0)g + Be 1), [h_)g = a|0)g + Be|1)g.  (5.136)

It can be clearly seen that in both cases the state of the system is weakly
perturbed: a small relative phase 46 is added. The sign of this phase is cho-
sen randomly due to the inherent randomness of the quantum measurement
process. If we repeat the entire procedure (system—environment interaction
plus environment measurement) several times we do not have jumps but a
slow diffusion in the relative phase 6 between the coefficients in front of the
states |0) g and |1)¢. Note that, also in this case in which the measurement
is performed in the z-basis, we can give a convenient description in terms
of generalized measurement, with the measurement operators

My = 2 (j0)0] + e ?1)(1]), My = 2 (10)(0] + € [1)(1]). (5.137)

Of course, this measurement weakly disturbs the state but also gives a small
amount of information on it: we only know that, as a result of the weak
measurement, a relative phase 6 has been added or subtracted.
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5.6.2 POVM measurements

POVM’s (“Positive Operator-Valued Measurements”) are well suited to de-
scribing experiments where the system is measured only once and therefore
we are not interested in the state of the system after the measurement.
This is, for instance, the case of a photon detected by a photomultiplier:
the photon is destroyed in the measurement process and therefore the mea-
surement cannot be repeated. A POVM is described by a set of positive
(more precisely, non-negative) operators F; (POVM elements), such that

ZFi =1 (5.138)

If the measurement is performed on a system described by the state vector
|1}, the probability of obtaining outcome i is

pi = (Y|Fi[Y). (5.139)

POVM’s can be seen as generalized measurements, provided we define
F;, = MJMi. Indeed, it is evident that this definition assures that Fj is
a non-negative operator. It is also clear that projective measurements are
POVM’s since in this case F; = M;LMz = M,, with M; projectors and
> Fi =%, M, = 1. However, we stress that in the POVM formalism we
do not make any assumption on the post-measurement state of the system.>

An example of POVM is shown in Fig. 5.4. The system qubit is initially
in the state p, the environment qubit in the state |0). In Fig. 5.4, R denotes
the rotation matrix

R = [ ' t] (5.140)

—tr

(we assume 0 < r < 1 and t = v/1—r2) and K a modified Hadamard
matrix:

K—\/L[ 11} (5.141)

It is easy to check by direct matrix multiplication that the circuit in Fig. 5.4

3The POVM formalism can also be used when the system is prepared in a mixed
state p. In this case, the probability of obtaining outcome i is p; = T&"(Fip); see, e.g.,
Peres (1993).
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implements the unitary transformation

1 » -t O
-1 r —t 0
— 1
U = 73 0 ¢t r 1 (5.142)
00—t —r 1

The two detectors D; and Dy drawn in Fig. 5.4 perform a standard
projective measurement with possible outcomes 0 and 1. In general, we
have four possible outcomes: 00, 01, 10 and 11 (in integer notation, 0, 1, 2
and 3), associated with the projectors

1000 0000
0000 0100
Po=10000l Pr=10000]"
(000 0| 1000 0]
- - - - (5.143)
0000 0000
0000 0000
P=10010] Ps="10000
1000 0| 000 1]
10) ——1 T an D,
p R K —— Dy

Fig. 5.4 A quantum circuit implementing a POVM measurement. The letters Dy and
D1 denote two detectors performing standard projective single qubit measurements.

The probability of obtaining outcome i is given by
pi = Tr(Upfff“UTPi) - Tr(pi(fIOt)Qi), (5.144)

where pi(flm)

erators Q; = UTP,U. We assume that p

is the initial two-qubit state and we have introduced the op-

() — 10)(0] @ p, with matrix
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representation

0
o = [g 0]7 (5.145)

where p and 0 are 2 x 2 submatrices and 0 has all matrix elements equal
to 0. Given this initial state, we have

pi = Tr(pi0Q:) = Te(oF), (5.146)

where F; is the 2 x 2 submatrix of @); corresponding to the value 0 of the
most significant qubit. In particular, if p = |1)(¢)| is a pure state, then

pi = (Y| F;]v). We obtain
1 A T Y el R B 147
0= 2 r 7"2 ’ 1 — _r 7"2 ) 2 = 0 1_7«2 5 (5 )

where we have added in Fy the contributions coming from Q2 and Q3
since they are identical. The F; constitute a POVM. Indeed, they are non-
negative operators and fulfill the condition ), F; = I.

POVM measurements are useful, for instance, to avoid misidentification
of non-orthogonal states. Let us consider the following example: Alice sends
Bob one of the following two states:

N[ =

[th1) = sin@|0) + cos @ [1), [the) = sin@|0) — cos @ |1}, (5.148)

where we assume 0 < § < 7. Then Bob performs on the received state a
measurement described by the POVM elements Fy, F} and Fy defined by
Eq. (5.147). Bob’s probability of obtaining outcome i, provided he received
the state |1g) (k=1,2), is

p(ilk) = (Yu|Filvr). (5.149)

We choose r = tanf. We have p(1]1) = 0 and p(0|2) = 0. Therefore, the
outcome i = 1 excludes that the state |1)1) was sent, whereas i = 0 excludes
|th2). Finally, if we obtain outcome i = 2, we cannot conclude anything.
Bob cannot always distinguish which one of the two non-orthogonal states
|th1) and [ip2) was sent. However, taking advantage of POVM measure-
ments, he can avoid misidentification.
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5.7 The Shannon entropy

The first basic task of classical information theory is to quantify the in-
formation contained in a message. This problem was solved by Shan-
non in 1948. A message is a string of letters chosen from an alphabet
A={ai,az,...,a;}. We assume that the letters in the message are statis-
tically independent and that the letter a; occurs with a priori probability
pi, where Zle p; = 1. The assumption that the letters are statistically in-
dependent has been made to simplify the discussion. In practice, this is not
the case in many important examples. For instance, there are strong corre-
lations between consecutive letters in an English text. However, the ideas
developed in this section can be extended to include more complicated sit-
uations with correlations. Thus, in what follows statistically independence
of the letters will always be assumed and it should not be forgotten that
the case of a real language (such as English) is somewhat different.

The Shannon entropy associated with the probability distribution
{p1,p2,...,pk} is defined by

k
H(plaPQa"'7pk) = _szlogpz (5150)
=1

Note that, here as in the rest of this book, all the logarithms are base 2
unless otherwise indicated. We shall show that the Shannon entropy quan-
tifies how much information we gain, on average, when we learn the value
of a letter of the message. Let us consider the special case k = 2 and define
p1 = p (where 0 < p < 1). Since ps = 1 — p, the Shannon binary entropy is
a function of p alone and we can write

Hyin(p) = H(p1,p2) = —plogp — (1 — p)log(1l — p). (5.151)

In the following we shall simply write H (p) instead of Hy;n(p). The Shannon
binary entropy H (p) is plotted in Fig. 5.5: it is equal to zero when p = 0 or
p = 1 and attains its maximum value H = 1 when p = % This is consistent
with our interpretation of H(p) as the average information content of each
letter in the message. Indeed, information is a measure of our a priori
ignorance. If we already know that we shall receive the letter a; with
certainty (p = 1), then no information is gained from the reception of this
letter. The same conclusion holds when p = 0 and we always receive as.
If, on the other hand, both letters are equiprobable, our a priori ignorance
is maximum and therefore when we receive a letter, we gain the maximum
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possible information H (%) = 1. In this case, we say that we have received
one unit of information, known as a bit. Typically, we write the letters as
binary digits; that is, a; = 0 and ay = 1.

O L 1 L 1 L 1 L 1 L
0 0.2 0.4 0.6 0.8 1

Y

Fig. 5.5 The Shannon binary entropy H(p) = —plogp — (1 — p) log(1 — p).

Exercise 5.12 Show that the Shannon entropy H(pi,...,px) is maxi-
mum when p; =--- =p = 1/k.

5.8 Classical data compression

5.8.1 Shannon’s noiseless coding theorem

We now show that the Shannon entropy is a good measure of information.
Let us consider the following fundamental problem: how much can a mes-
sage be compressed while still obtaining essentially the same information?
In other words, what are the minimal physical resources required in order
to store a message without loosing its information content?

As an example, we consider a message written using an alphabet with
four letters, A = {a1,a2,a3,as}. We assume that these letters occur with
probabilities p; = %, P2 = i, P3 = pg = é. To specify a letter out of four
we need 2 bits of information. It is instead more convenient to encode the
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letters as follows:

ay —c1 =0, ay — co =10, a3 — c3 = 110, ag4 — ¢4 = 111.

(5.152)
To send one coded letter we need, on average, E?Zl p;l; bits, where [; is the
length, in bits, of the coded letter ¢; (we have [y =1, lo = 2, I3 = Iy = 3).
Since ), pil; = % < 2, we have compressed the information. Note that the
good strategy, here as in any other useful compression code, is to encode
the most probable strings in the shortest sequences and the less probable
strings in the longest sequences.

Shannon proved that the optimal compression rate is given by the Shan-
non entropy. If Alice sends Bob a string of n letters taken from the alphabet
A ={a,...,ar} and each letter a; occurs with the a priori probability p;,
then, for large n, Alice can reliably communicate her message by sending
only nH (p1,...,pr) bits of information. This is the content of the Shan-
non’s noiseless coding theorem.

Theorem 5.3 Shannon’s noiseless coding theorem: Given a message in
which the letters have been chosen independently from the ensemble A =
{a1,...,ar} with a priori probabilities {p1,...,px}, there exists, asymptoti-

cally in the length of the message, an optimal and reliable code compressing
the message to H(p1,...,pxr) bits per letter.

Note that in the example considered above the optimal compression
rate is H = —E?lei logp; = %. Since ), pili = % = H, the optimal
compression established by the Shannon’s theorem has been attained.

A proof of Shannon’s theorem can be found in Cover and Thomas
(1991). Here, we shall limit ourselves to explaining the basic argument.
First of all, it is useful to introduce the concept of typical sequence. A par-
ticular n-letter message, x1, %o, ..., T,, where x; € A, occurs with a priori
probability

p(x1,x2,...,2,) = p(x1) p(x2) - p(an), (5.153)

where we have assumed that the different letters of the message are inde-
pendent and identically distributed according to the probability distribu-
tion {p1,pe,...,pr}. A typical sequence contains approximately np; times
the letter ai, nps times the letter as, ... and np, times the letter ay.
The number of such strings is given by n!/ Hle(npi)!, which represents
the number of distinct strings having np, times a;, nps times as and so on.
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It is easy to show (see exercise 5.13) that
n!

k !

[Tz (npi)!

Exercise 5.13 Using Stirling’s formula, logn! = nlogn — n/In2 +
O(logn), where In denotes the natural logarithm (having base e), prove
Eq. (5.154).

~ 2nH(p1,~~~7Pk). (5154)

The probability of obtaining any given typical sequence x1, X2, ..., Ty
is

play, o, ... xp) ~ 2 HPLPL) (5.155)

Indeed, from Eq. (5.153) we obtain
11 _ ! n 1 i)~ H 5.156
—logp(w,... ) = ‘52 ogp(z;) = H(p,...,px),  (5.156)

1=

where the last (approximate) equality is guaranteed by the law of large
numbers and is obtained as follows: for all j = 1,2,... k, the frequency
n;/n of the letter j in the message is substituted by the a priori probability
p; (n; is the number of times that j appears in the message). The law of
large numbers also tells us that, if we fix ¢ > 0 and we say that a sequence
is e-typical when

1
_Elogp(xla"'vxn)_H(pla"'vpk) < € (5157)

then, for any § > 0, the probability that a given sequence is e-typical is
larger than 1 — ¢, for sufficiently large n. Therefore, most of the sequences
are e-typical in the limit of large n.

Since there are 2" typical sequences (asymptotically in n), each occur-
ring with probability 27", we can identify which one of these sequences
actually occurred using nH bits. Moreover, it can be shown that this
asymptotic compression to H bits per letter is optimal. Note that it is
sufficient to code only the typical sequences since the probability that a
message is atypical becomes negligible for large n.

5.8.2 Examples of data compression

It is clear that an “asymptotic” data compression strategy; that is, a strat-
egy based on the compression of long typical sequences is not practical:
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to compress a long n-letter message, we must accumulate all n letters be-
fore identifying the typical sequence and compressing it. Fortunately, there
exist quite efficient methods to encode smaller strings of letters.

A first example was shown in Sec. 5.8.1. Here we consider further exam-
ples. First of all, we apply the encoding (5.152) to a four-letter alphabet,
with p; = 0.9, p2 = 0.05, p3 = p4 = 0.025. The optimal compression is de-
termined by H (p1,p2,ps, pa) =~ 0.62, while the code gives Y p;l; = 1.15 and
therefore data compression in this case, even though useful, is not optimal.

Let us apply the same code to the case in which the four letters are
equiprobable, p; = % for i = 1,...,4. In this case, no compression is
possible, because H = 2 and we send exactly two bits to specify a letter.
Furthermore, if we try to apply the previous code, we obtain > p;l; =
2.25 > 2 and therefore the code is in this case detrimental to the efficiency
of data transmission.

Finally, let us consider the Huffman code, shown in Table 5.1. We
consider a binary alphabet {0, 1} and the encoding procedure is applied to
strings four bits long. There are 2* = 16 such strings (0 = 0000, 1 = 0001,
..., 15 =1111). Let P; denote the probability that the string 7 occurs, with
i=0,...,15. We have Py = p3, P\ = p3p1, ..., Pi5s = p}. If we consider,
for instance, the case with pg = % and p; = %, we find that the best possible
compression for a four-letter message is given by 4H (po,p1) =~ 3.25, while
the Huffman code gives on average Zio P;l; = 3.27 bits, which is very close
to the optimal value. This shows the power of data compression codes.

The enormous practical importance of data compression in fields such as
telecommunication is self-evident. Data compression allows us to increase
the transmission rate or the storage capacity of a computer. To achieve such
results, we simply exploit the redundancies that any message contains: for
instance, the letters of an (English) text are not equiprobable but appear
with different frequencies. Shannon’s theorem tells us that, as far as the
letters of a message are not equiprobable, data compression is possible.*

5.9 The von Neumann entropy

The quantum analogue of the Shannon entropy is the von Neumann entropy.
If a quantum system is described by the density matrix p, its von Neumann

4The notion of differing probabilities should not be confused with correlations, which
are present in a real language but are not being considered here.
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Table 5.1 Data encoding by means of the

Huffman code, with po = 3, p; = 1.

Message Huffman’s encoding
0000 10
0001 000
0010 001
0011 11000
0100 010
0101 11001
0110 11010
0111 1111000
1000 011
1001 11011
1010 11100
1011 111111
1100 11101
1101 111110
1110 111101
1111 1111001

entropy S(p) is defined as

S(p) = —Tr(plogp). (5.158)

To see the analogy with the Shannon entropy, let us consider the follow-
ing situation: Alice has at her disposal an alphabet A = {p1,p2,...,pr},
where the letters p; are density matrices describing quantum states (pure
or mixed). The letters are chosen at random with probabilities p;, where
Zle p; = 1. Let us assume that Alice sends a letter (a quantum state)
to Bob and that Bob only knows that the letter has been taken from the
ensemble {p;, p;}. Thus, he describes this quantum system by means of the
density matrix

k
p = Zpipi- (5.159)
i=1
Therefore,

k
S(p) = —Tr(plogp) = —> Ailoghi = H(M,..., M), (5.160)

i=1

where the \; are the eigenvalues of the density matrix p and H (A1, ..., A\g)
is the Shannon entropy associated with the ensemble {);}.
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The von Neumann entropy satisfies the following properties:

1. For a pure state, S(p) = 0. Indeed, in this case only one eigenvalue of p is
different from zero, say Ay = 1, so that — ). Ajlog \; = —A1log A1 = 0.

2. The entropy is not modified by a unitary change of basis; that is,
S(UpUT) = S(p). Actually S(p) depends only on the eigenvalues of
p, which are basis-independent. This property means that the von Neu-
mann entropy is invariant under unitary temporal evolution.

3. If the density operator p acts on a N-dimensional Hilbert space, then
0 < S(p) <logN. It is easy to see that S(p) > 0 since 0 < \; < 1 and
therefore —\;logA; > 0. To show that S(p) < log N, we use S(p) =
H()\,...,An) and remember that the Shannon entropy H(A1,...,AN)
takes its maximum value log N when A\; = --- = Ay = 1/N (see exer-
cise 5.12). Hence, Spmax = —% Zf\il log % =log N.

The following examples give a flavour of the similarities and the differ-
ences between the von Neumann entropy and the Shannon entropy.

5.9.1 Example 1: source of orthogonal pure states

In the simplest case, Alice has at her disposal a source of two orthogonal
pure states for a qubit. These states constitute a basis for the single qubit
Hilbert space and we call them |0) and |1). The corresponding density
matrices are pg = |0)(0] and p; = |1)(1]. We assume that the source
generates the states |0) or |1) with the a priori probabilities pg = p and
p1 = 1 — p, respectively. Therefore, we can write

p = pol0){0] + p1[1)(1| = l%o }? ] , (5.161)

and the von Neumann entropy is given by

po O logpo 0
0 p 0 logp:

= —pologpo — p1logpr = H(po,p1). (5.162)

S(p) = —Tr(plogp) = —Tr<

Therefore, in this case, in which the letters of the alphabet correspond
to orthogonal pure states, the von Neumann entropy coincides with the
Shannon entropy. Thus, the situation is in practice classical, from the
point of view of information theory. This is quite natural since orthogonal
states are perfectly distinguishable.
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5.9.2 Ezxample 2: source of non-orthogonal pure states

Let us consider the case in which the pure states [0) and |1) generated by
a source are not orthogonal. It is always possible to choose an appropriate
basis set {|0),|1)} (see Fig. 5.6) so that

C

|0) = cos@|0) +sinf|1) = ) (5.163a)

1) = sinf0) + cosf|1) = [(ﬂ , (5.163b)

where we have defined C' = cosf and S = sinf. We consider, without any
loss of generality, 0 < 8 < w/4. Note that the inner product of these two
states is in general non-zero and given by

(0]T) = sin 26. (5.164)
The density matrices corresponding to the states |0) and |1) read

S5z CsS
CS C?

c? CS

g e | m ==

po = 0)(0] = (5.165)

0)
0)

Fig. 5.6 A representation of two non-orthogonal quantum states |0) and |1) in an ap-
propriately chosen basis {|0), |1)} for a qubit.

)

If the source generates the state |0) with probability p and the state |1)
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with probability (1 — p), the corresponding density matrix is

S24pcos 20 cSs
=ppo+(1—p = . 5.166
P po o cSs C?—pcos20 ( )
The eigenvalues of the density matrix are
Ay = %(1 + /1 4p(p — 1) cos? 29). (5.167)

They are represented in Fig. 5.7 as a function of the probability p and for
different values of §. We note that for § = 0 the states are orthogonal and
the eigenvalues of the density matrix are p and 1 — p ; namely, we recover
the classical case. For the other values of # the eigenvalues “repel” each
other, as can be seen from Fig. 5.7. As we shall show in the next section,
this has important consequences for quantum data compression.

1

0.8

0.6

0.4

0.2

Fig. 5.7 The eigenvalues of the density matrix (5.166) as a function of the probability
p. The values of the angle 6 are: 1: § =0, 2: 0 = 0.27, 3: ¢ = 047, 4: 0 = 0.67 and
5: 0= 0.8%. The value 8 = 0 corresponds to orthogonal states.

Starting from the eigenvalues of the density matrix (5.166), it is easy to
compute the von Neumann entropy

S(p) = =Ayloghy — A_log A, (5.168)
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1 :
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06 - 4
)
0.4 4 4
02 - 4
5
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Y

Fig. 5.8 The Von Neumann entropy of the density matrix (5.166) as a function of the
probability p. The numbers are associated with the same values of the angle 6 as in the
previous figure.

shown in Fig. 5.8. At 6 = 0, we recover the classical results since in this
case S(p) = H(p). If 6 = w/4, then S(p) = 0. Indeed, since in this
case the states are identical, there is no transmission of information. As
can be seen in Fig. 5.8, S(p) < H(p) and it is possible to prove that this
inequality has general validity. A qualitative interpretation follows from our
understanding of entropy as a measure of our ignorance about the system.
If the states are non-orthogonal, their similarity increases with their inner
product (0/1) = sin26. Therefore, Bob obtains less information from the
reception of a state taken from the ensemble {|0),|1)} since his a priori
ignorance is smaller. In the limiting case § = 7/4 the superposition of the
states of the ensemble is unity; that is, the states are identical and there
is no a priori ignorance about the system. Therefore, no information is
transmitted in this case.
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5.10 Quantum data compression

5.10.1 Schumacher’s quantum noiseless coding theorem

The Schumacher’s quantum noiseless coding theorem is an extension to
the quantum case of the Shannon’s noiseless coding theorem discussed
in Sec. 5.8. Alice sends Bob a message of n letters, each letter be-
ing chosen at random from the alphabet (ensemble of pure states) A =
{11), |¥2), - - ., |¥x)}. The state |¢);) is extracted with a priori probability
pi and >, p; = 1. Therefore, each letter in the message is described by the
density matrix

k
p =Y pili)(Wil, (5.169)
i=1

and the density matrix for the entire message is
Pt o= po", (5.170)

where p®" denotes the tensor product p®@p®---®@p. It is clear that we have
assumed that all the letters in the message are statistically independent
and described by the same density matrix p. Schumacher’s theorem tells us
that it is possible to compress the message, namely to encode it in a shorter
message, the optimal compression rate being the von Neumann entropy.

Theorem 5.4 Schumacher’s quantum noiseless coding theorem: Given

a message whose letters are pure quantum states drawn independently from
the ensemble A = {|¢1),...,|¥x)} with a priori probabilities {p1,...,pr},
there exists, asymptotically in the length of the message, an optimal and
reliable code compressing the message to S(p) qubits per letter, where p =

S pilwn) (.

The proof of this theorem can be found in Schumacher (1995) and closely
follows the techniques used in the proof of the Shannon’s noiseless coding
theorem. Here, we simply illustrate the basic ideas of the proof. Let us
first write the spectral decomposition of the density operator p:

k
p = Z/\7,|az><a1| (5.171)

Clearly, we have H(A1,...,Ax) = S(p). The ensemble A" = {|a1),...,|ak)}
constitutes an alphabet of orthogonal pure quantum states. Following the



304 Principles of Quantum Computation and Information. II

definition of e-typical sequence given Sec. 5.8, we say that a state |z1) ®
o ® |2y ), with |x;) € A, is e-typical when

—% log [A(z1) -+ Azn)] — S(p)| < e, (5.172)

where A(z;) = A; if |z;) is the letter |a;). We define the e-typical subspace
as the subspace spanned by the e-typical states. It can be shown that the
dimension of this subspace is &~ 275() | If Piyp, denotes the projector on this
subspace, then, for any § > 0, we have Tr(Ppp") > 1 — 4§, provided n is
large enough. Therefore, for n — oo the density matrix p™ has its support
on a typical subspace of dimension 2%(P). A typical n-state message can
then be encoded using n.S(p) qubits.

5.10.2 Compression of an n-qubit message

In this section, we follow the presentation of Schumacher (1998). Let us
consider the binary alphabet A = {|1q), |11)}, where [40) = |0) and |¢1) =
1) are the qubit states defined by Egs. (5.163a-5.163b). Assume that Alice
wishes to send the following n-qubit message to Bob:

|\IIK> = |wk1>® |1/1k2>®"'®|1/)kn>, (5173)

where K = {ki, k2, ..., k,} singles out the message (k; = 0,1). The states
|0) and |1) are drawn from the alphabet A with probabilities p and 1 — p,
respectively. Any n-letter message |¥ k) belongs to the Hilbert space

HY = HO®", (5.174)

where H is the Hilbert space for a single qubit. Thus, H"™ has dimension
2™, Tt is possible to diagonalize the density matrix

p = pl0){0] + (1 - p) 1)1 (5.175)

and then construct the typical subspace as explained in the previous sub-
section. A generic message |tk ) can then be decomposed into a component
belonging to the typical subspace (we call it Hyyp) and another belonging
to its orthogonal complement, known as the atypical subspace (Hatyp). We
can write

Ux) = axlryg) + Brlri), (5.176)

where |7j) € Hiyp and |77) € Hatyp-
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Alice performs a measurement to determine if |¥ g) belongs to the typ-
ical subspace or not. If this is the case, the message is encoded and sent
to Bob. Since the typical subspace has dimension ~ 2"5(?) we need only
nS(p) qubit for the encoding (we shall see an example of encoding for n = 3
qubits in Sec. 5.10.4). If instead |V k) belongs to the atypical subspace, we
substitute it with some reference state |R) living in the typical subspace.
Finally, Bob decodes the nS(p) qubits received from Alice and obtains a
state described by the density matrix

pr = lax|?|me) (k| + |8k |* |R)(R]. (5.177)

How reliable is the transmission of quantum information by means of this
procedure? A method to answer this question is to compute the fidelity F,
defined as

F = (Uklpx|¥k). (5.178)

We have 0 < F' < 1, where the maximum value ' = 1 is obtained when the
initial and final states coincide (px = |V )(¥g|), while F = 0 when the
initial and final states are orthogonal. The average fidelity F' is obtained
after averaging over all the possible messages |¥ ), each weighted with the
probability px of its occurrence:

F =3 pr(Vklix|¥x)
K

= 3" il el (I Pl (rsc | + 185 PIR) (R [2)
K

= D _oxlaxl*+ )18k (Vk|R). (5.179)
K K

It is possible to show that the average fidelity tends to 1 as n — oo. This
means that, in this limit, messages have unit overlap with the typical sub-
space. Hence, we can code only the typical subspace and still achieve good
fidelity.

Comments

(i) Alice could send Bob classical information and Bob could use this
information to reconstruct Alice’s n-qubit message (5.173). Indeed,
she could send the sequence K = {k1,ka,...,kn}, as this sequence
uniquely determine the message |V k). According to Shannon’s noise-
less coding theorem, this sequence can be compressed by a factor given
by the Shannon entropy H. However, this compression is not optimal if
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the alphabet is made of non-orthogonal quantum states. For instance,
if the states |0) and |1) are taken with equal probability py = p = %
andpy =1—p= %, then H(%) = 1, whereas

S(p) =— (1 +sin26)log(% (1 + sin 26))
(1 — sin26) log(5(1 — sin26)) , (5.180)

see Eqgs. (5.167-5.168), which is smaller than H(3) as far as 6 # 0.
The price to pay to compress the quantum information by a factor
S < H is that Bob can reliably reconstruct the quantum state that
Alice sent to him, but cannot know exactly what state he received.
Indeed, each letter received is taken from a source of non-orthogonal
quantum states and, as we know, non-orthogonal states cannot be dis-
tinguished with perfect reliability. Nevertheless, the compression of
quantum information may be useful for several foreseen applications.
For instance, one could compress the quantum memory of a quan-
tum computer or transfer compressed quantum information between
different quantum processors.

5.10.3 FExzample 1: two-qubit messages

This simple example illustrates the difference between the compression of
classical and quantum messages in the case in which the letters are rep-
resented by non-orthogonal quantum states. Let us consider the alphabet
A = {|0), 1)} defined by Eqs. (5.163a-5.163b). We assume that the state
|0) is drawn from the alphabet A with probability p and the state |1) with
probability 1 — p. Alice generates a two-qubit message but she can only

afford to send Bob a single qubit. Bob receives this qubit and guesses that

the second letter of the message is some reference state, say |0). What is
the fidelity of his guess? Let us first compute the fidelities Fx = |(12|0)|? of
the four possible messages, |1)2) being the actual state of the second qubit.
We have Fx = 1 if [1)9) = |0) and Fi = sin? 20 if |¢)0) = [1).

K Message PK Bob’s guess Fr
0 |00) p? |00) 1

1 |01) p(1—p) |00) sin? 20
2 |10) p(l—p |10) 1

3 |11) (1 —p)? |10) sin? 20
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We can readily compute the average fidelity

F = ZpKFK = pcos’ 20 + sin? 26, (5.181)
K

which is shown in Fig. 5.9 for various values of §. We note that § = 0
(transmission of orthogonal states) corresponds to the classical case. In-
deed, we can define a classical fidelity f. x, which is equal to 1 if a message
is correctly transmitted (in our example, for K = 0 and K = 2) and equal
to 0 otherwise (for K = 1 and K = 3). It turns out that the average classi-
cal fidelity f. = >k Prfe,x = is equal to the quantum fidelity for 6 = 0.
For 0 # 0, the states |0) and |1) are no longer orthogonal and therefore the
fidelity is higher (we have Fy = F5 = sin? 26 > 0, while fea=fe3=0). In
the limiting case § = 7/4, the states |0) and |1) coincide and therefore F' = 1
for any value of p. Note that in this case no information is transmitted since
the states |0) and |1) cannot be distinguished by any measurement.

1
5
0.8 - -
0.6 - 4 .
I L 3
0.4 .
2
02 ~ i
1
O 1 | 1 | 1 | 1 | 1
0 0.2 0.4 0.6 0.8 1

Y

Fig. 5.9 The average fidelity F for a two-qubit message when only the first qubit is sent
(see text). The values of the angle 6 are: 1: € =0, 2: ¢ = 0.27%,3: 0 =0.47, 4: 0 =0.67
and 5: 0 = 0.8%.
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5.10.4 Example 2: three-qubit messages

In order to clarify the principles of quantum data compression, it is useful
to consider the example of a message consisting of three qubits chosen from
the ensemble {|0),|1)} with a priori probabilities {p,1 — p}, where |0) is
the letter generated with probability p > % Let us assume that Alice
can only afford to send Bob two qubits and that Alice and Bob wish to
devise a strategy to maximize the average fidelity for the transmission of a
three-qubit messages.

Each letter of the message is described by the density matrix p =
p|0)(0] + (1 — p)|1)(1], whose eigenvalues A+ were written down in
Eq. (5.167). The corresponding eigenstates are given by

1
\/(/\i + pcos20 — C?2)2 + C252

A+ +pcos20 — C?
cs

+) =

1 . (5.182)

where we have again used the shorthand notation C' = cos @ and S = sin 6.
It is also useful to write down the inner products

C[)\i + pcos26 — CQ] + 052

/Ny ’

) S 20— C2] + C2S
(i) = S+ poos [+cs (5.183b)

N

0|1%) = (5.183a)

where we have defined
Ni = (Ax +pcos20— C2)% 4+ C25°. (5.184)
We call |Tk) the 8 possible messages,
|To) = 1000), |®y) = [001), ..., |¥;) = |I11), (5.185)
and |y ;) the eigenstates of p®3:
Xo) = [++4), D) =1++=) oy Ixg) =[—-—=) (5.186)

where |+) and |—) are the eigenstates (5.182) of p. The states {|x;)}
constitute a basis for the three-qubit Hilbert space and we can therefore
decompose the possible messages as follows:

Wr) = cxslxy) (5.187)
J

where we have defined cx; = (x;|Vk).
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Since Ay > A_ for p > %, then in the spectral decomposition of the
density matrix p the weight A; of the eigenstate |+) is higher than the
weight A_ of the eigenstate |—). The most likely subspace is spanned by

the most likely states, namely
{Ixo)=l+++), xv)=l++-), ha)=l+—+), [xa)=|-++)},  (5.188)

while the unlikely subspace is spanned by

{s)=l+—=), Ixs)=l—+-), Ixe)=l——+), Ixs)=|-——)}.  (5.189)

The states |¥ i) of the message can be decomposed into a component |7x)
along the likely subspace and a component |77) along the unlikely subspace;
that is, |V k) = ax|Tk) + Br|T#). The coefficients ax and B are given
by

ax = Vl]ekol? + lex1 2+ |exal? + |exal?,

(5.190)
Br = V]crs|? + |exs|? + |exe|? + |exr|?,

where the coefficients ck; can be easily computed by exploiting expressions
(5.183a) and (5.183b) for the inner products (0|+) and (I|+).

In order to code the message, Alice employs the following strategy. She
applies a unitary transformation U that rotates the basis states spanning
the likely subspace (|xo0) |x1), |x2) and |x4)) into the states |i1)]i2)|0) (with
i1,42 = 0,1), whereas the unlikely states |xs) [x5), |x6) and |x7) are rotated
into |i1)]é2)|1). She then performs a measurement of the third qubit: if she
obtains 0, her state |¥ k) has been projected onto the likely subspace. In
this case, she sends the first two qubits to Bob. If instead she obtains
outcome 1, her state has been projected onto the unlikely subspace and she
sends Bob the first two qubits of U|R), where |R) is some reference state
belonging to the likely subspace. For instance, she takes |R) equal to the
most likely state |xo). Bob appends to the two qubits received an ancillary
qubit, prepared in the state |0). He then applies the operator U ! to these
three qubits and ends up with a state described by the density matrix

pre = lax i) (| + 1Bk [P | R)(R). (5.191)

The average fidelity is then given by

7

7
F =3 pitWxloxl¥i) = > pic(laxl* + 8k (k| R)2), (5.192)
K=0 K=0
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where pg is the probability that the message |V ) is generated. The graph
of F as a function of p is shown in Fig. 5.10, for various values of . This
figure exhibits several interesting features. First of all, for § = 0 we recover
the classical case, in which the average fidelity f. is obtained after summing
the probabilities of all messages correctly transmitted. The calculation is
similar to that performed in the previous subsection for two-qubit messages
and gives

fe=p*+3p°(1—p) = 3p* — 2p°. (5.193)

We note that for p = % we have f, = % Indeed, in this case we have

8 messages occurring with the same probability and only 4 are correctly
transmitted. The average quantum fidelity F is instead larger than % when
6 > 0. This is because our a priori ignorance for non-orthogonal states is
smaller than for orthogonal states. In the limiting case 8 = 7/4 the states
|0) and |1) superimpose. Thus, F(7/4) = 1 but there is no transmission of
information.

09 - -

0.8 - i

0.7 i

0.6 - .

0.5 L 1 L 1 L 1 L 1 L
0.5 0.6 0.7 0.8 0.9 1

Y

Fig. 5.10 The average fidelity F for the transmission of a three-qubit message by means
of a two-qubit code (see details in the text). From bottom to top: 8 = 0, 7/16, 7/10
and 7/6.
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5.11 Accessible information

We assume that Alice sends Bob a message whose letters are chosen inde-
pendently from the alphabet A = {aq,...,ar} with a priori probabilities
{p1,...,pr}. The letters of the alphabet are coded by quantum states
that are not necessarily orthogonal. In this section we consider the fol-
lowing problem: how much information can Bob gain on the message by
performing measurements on the quantum states received? This problem
is non-trivial since non-orthogonal quantum states cannot be perfectly dis-
tinguished. It is important to emphasize that, as we saw in Chapter 4, this
property lies at the heart of quantum cryptography.

First of all, a few definitions are needed. If X is a random variable
that takes the value z with probability p(x) (x € {a1,...,ar} and p(z) €
{p1,...,pr}), then the Shannon entropy H(p1,...,px) is also called H(X)
and we write

k
H(X) = —Zp(x) logp(x) = —Zpi log p;. (5.194)
x i=1
Note that H(X) indicates a function not of X but of the information content
of the random variable X.

Joint entropy: the joint entropy of a pair of random variables X and
Y having values x and y with probabilities p(z) and p(y), respectively, is
defined by

H(X,Y) = =Y pla,y)logp(z,y), (5.195)

z,y
where p(z,y) is the probability that X =z and Y = y.

Conditional entropy: The conditional entropy H(Y|X) is defined by
H(Y|X) = H(X,Y) — H(X). (5.196)

It is a measure of our residual ignorance about Y, provided we already know
the value of X. Similarly, we can define H(X|Y) = H(X,Y)—-H(Y). It is
easy to show that

HY|X) = =) pla,y)logp(ylz), (5.197)

T,y
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where p(y|z) = p(z,y)/p(z) is the probability that ¥ = y, provided X = x.
Indeed,

H(X,Y) - H(X) = —Zpar y)logp(x,y) +Zp )log p(x

- Zp z,y) log(p(x)p(y|2)) + Y p(x,y) log p()
I’y

z,y

= pl@,y)logp(ylx), (5.198)

I!y
where we have used Eyp(x, y) = p(x). Similarly, we obtain
HX|Y) = =) pla,y)logp(zly). (5.199)
T,y

Mutual information: The mutual information I(X:Y) is defined by
I(X:Y) = H(X)+ H(Y) - HX,Y). (5.200)

This quantity is a measure of how much information X and Y have in
common. It can be easily shown that

Zp z,y) log (ai)p;:t;) (5.201)

From this expression it is clear that, if X and Y are independent, namely
p(z,y) = p(x)p(y), then I(X:Y) = 0. The mutual information is related to
the conditional entropy as follows:

I(X:Y) = HX) - HX|Y) = H(Y) - H(Y|X). (5.202)

We note that, as is clear from its definition (5.200), the mutual information
is symmetric:

I(V:X) = I(X:Y). (5.203)

Let us now return to the problem introduced at the beginning of this
section. If X and Y denote the random variables associated with the letters
generated by Alice and with Bob’s measurement outcomes, respectively,
then the accessible information is defined as the maximum of I(X:Y") over
all possible measurement schemes.
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5.11.1 The Holevo bound

The Holevo bound (proved by Holevo in 1973) establishes an upper bound
on the accessible information.

Theorem 5.5 The Holevo Bound: If Alice prepares a (mized) state px
chosen from the ensemble A = {po,...,pr} with a priori probabilities
{p1,...,pr} and Bob performs a POVM measurement on that state, with
POVM elements {Fy,...,F} and measurement outcome described by the

random variable Y, then the mutual information I(X:Y) is bounded as fol-
lows:

k
[(X:Y) < S(p) = D_piS(pi) = X(€), (5.204)

where p = Elepipi and x(€) is known as the Holevo information of the
ensemble € = {p1,..., Pr;P1y-- Dk}

A proof of this theorem can be found in Nielsen and Chuang (2000).
Here, we shall limit ourselves to discuss the Holevo bound in a few concrete
examples.

5.11.2 FExzample 1: two non-orthogonal pure states

If Alice sends Bob pure orthogonal quantum states drawn from the ensemble
{|¥1),- .-, [¥k)}, then Bob can unambiguously distinguish these states by
means of projective measurements described by the POVM elements (in
this case, simple projectors) {F1 = 1) (1], ..., Fr = [¥r)(Yi|}. Tt is easy
to check that I(X:Y) = H(X) (we have H(X|Y) = 0) and therefore this
case is no different from the transmission of classical information over a
noiseless channel: if we send the letter a,, we recover the same letter; that
is, ay = ag.

The simplest example that cannot be reduced to classical information
theory is that in which Alice sends Bob states generated by a source of non-
orthogonal pure quantum states. We assume that the states |[0) and |1),
defined by Egs. (5.163a-5.163b), are generated with probabilities pg = p
and p; = 1 — p, respectively.

Since the single letters are represented in this case by pure states, their
von Neumann entropy is equal to zero: S(po) = S(|0)(0]) = 0 and S(p1) =
S(|1)(1]) = 0. Therefore, the Holevo information x (&) reduces to

X(E) = S(p), (5.205)
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where p = ppo + (1 — p)p1. Hence, the Holevo bound gives
I(X:Y) < S(p). (5.206)

A plot of S(p) was already shown in Fig. 5.8. It reveals that, for non-
orthogonal states (6 # 0), S(p) < H(X) and therefore I(X:Y) < H(X).
It is possible to show that this strict inequality also has general validity
for mixed states {p;}, provided they do not have orthogonal support (for
orthogonal support, I(X:Y) = H(X)).

It is instructive to consider the following special case: we assume that
Bob performs a projective measurement on the received qubits along the
direction n (that is, he measures n - o) and we show that in this case
the Holevo bound is satisfied. For this purpose, we compute the mutual
information. Bob’s measurement along the direction 7 is described by the
POVM elements (projectors)

F = %([+ﬁ.a)7 P = %(I—ﬁ-o’). (5.207)

For instance, if n = (0,0, 1), then Fy = |0)(0] and F} = |1)(1]. We compute
the conditional probability

p(yla?) = Tr(pxFy), (a:,y = Ovl)a (5208)

which is the probability that Bob’s measurement gives outcome y, provided
the state p, was sent by Alice. For this purpose, we write down the Bloch-
sphere representation of the density matrices associated with the states |6)
and |1) (see Sec. 5.1.1):

po = 0)(0| = 3(I+rg-0), p1 = 1)1 = $(I+ri-0), (5.209)

where the Cartesian components of the Bloch vectors rg and 71 are given
by

ro = (sin 26,0, cos 20), r1 = (sin26,0, — cos 26). (5.210)

Taking into account that Tr(c;) = 0 and Tr(o;0;) = 26;; for 4,5 = x,y, 2
(see exercise 5.2), it is now straightforward to compute the conditional
probabilities:

p(0]0) = Tr(poFy) = 3 (147 - n),
p(1]0) = Tr(poF1) = % (1 —ro 7?’)7 (5.211)
p(0[1) = Tr(pFo) = 5 (1+71-7),

(111) (mF1) = 5 ( )-

—
I
ﬁ

-
S



Quantum Information Theory

315

If, for the sake of simplicity, we assume that the measurement direction
lies in the (x, z) plane of the Bloch sphere; that is, 7 = (sinf,0, cosf) (see

Fig. 5.11), we have

[1+ cos(d — 26)],
[1 — cos(f + 26)],

!
—~
<
=]
N~—
(SIS

20

>
\

p(1]0)
p(1[1)

Py

N[—= D=

=

[1 — cos(f — 20)],

i (5.212)
[1 4 cos(0 + 20)].

Fig. 5.11 A geometric visualization of the Bloch sphere vectors pp and p; and of the

measurement axis 7.

We now compute p(z, y)

= p(z)p(y|z), where, as stated at the beginning

of this subsection, we assume that the states |0) and |1) are generated with
probabilities p(X = 0) = p and p(X = 1) = 1 — p, respectively. We thus

have

p(0,0) = %
p(0,1) = 3
p(1,0) = 3
p(1,1) = 3

[1 + cos(f — 20)],

[1— cos(d — 292]) (5.213)
—p)[1 — cos(0 + 20)],
—p) [1 4 cos(f + 26)].
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Then we compute p(y) = >, p(x,y) and obtain

p(Y=0) =
p(Y=1) =

Finally, we insert the expressions derived for p(z), p(y) and p(z,y) into
Eq. (5.201), obtaining the mutual information I(X:Y").

As an example, in Fig. 5.12 we show the mutual information I(X:Y")
for 6 = 7/10 and p = 0.8. Within the chosen measurement scheme, the
only free parameter that may be varied in order to maximize I is §. The
maximum value Iy, = maxgI(f) ~ 0.40 is attained for § ~ 0.147. We
stress that this value is below the Holevo bound x = S(p) =~ 0.526. Of
course, this value is also smaller than the classical bound I(X:Y) < H(X) ~
0.722.

[1+4 pcos(d —20) — (1 — p) cos(f + 20)],

_ _ (5.214)
[1 —pcos(f —20) + (1 — p) cos(0 + 26)].
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Fig. 5.12 The mutual information I(X:Y) for a message coded by means of the non-
orthogonal states (5.163a-5.163b), with § = 7/10 and p = 0.8. The angle 6 determines
the measurement direction 72 = (sin 6, 0, cos f). The dashed line shows the Holevo bound
x ~ 0.526.

Exercise 5.14 Alice sends Bob the state |0) with probability p or the
state |1) with probability 1 — p. For this purpose, they employ a quantum
channel whose action on a state with Bloch vector (z,y, z) is given by

r— 2 =ax, y—y =ay, z— 7 =z, (5.215)

where 0 < a < 1 (note that this quantum channel corresponds to the phase-
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flip channel, which will be discussed in Sec. 6.1.5). Finally, Bob performs
a standard projective measurement along the direction nn. Compute Alice
and Bob’s mutual information.

Exercise 5.15 Repeat the previous exercise for the case in which the
action of the quantum channel on a state with Bloch vector (z,y,z) is
given by

z — a = xzcosb, y — 1y = ycosl, z — z = sin®6+ zcos?6,
(5.216)
where 0 < 6 < 7 (this quantum channel corresponds to the amplitude-
damping channel, which will be discussed in Sec. 6.1.8).

5.11.3 * Example 2: three non-orthogonal pure states

Let us now consider the case in which Alice’s alphabet is A =

{l¢0),|#1), |P2)}, where

[po) = |0), |é1) = cos@|0) +sinb|1), [p2) = cosB|0) —sind [1).

(5.217)
A graphical representation of these three non-orthogonal quantum states is
shown in Fig. 5.13. We call po = [¢0)(¢0l, pr = [¢1){(¢1]| and p2 = [¢2){¢2|
the density operators associated with these quantum states. We assume
that each letter of Alice’s message is one of the three states of this alphabet,
chosen with a priori probabilities {po, p1,p2}. In the following we assume
that po = p1 = po = p = 1/3 and 6 = 2x/3. Under these conditions,
the matrix representations of the density operators pg, p1 and ps in the
{]0),]1)} basis read

pPo = [(1) 8], PlZi[_\l/g_;/?)]’ PQZi[\}g\?}- (5.218)

The density matrix that describes the above ensemble of pure quantum
states is

p = popo+pip1 +pape = 51, (5.219)

and therefore S(p) = 1. Since the letters of Alice’s message are pure states,
the Holevo bound on mutual information gives I(X:Y) < S(p) = 1.
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1)

9,
0,) = 10)

0,

Fig. 5.13 A graphical representation of the three quantum states of the alphabet A =
{‘d)O)v |¢1>7 ‘(b2>}

Bob measures the received qubits by means of the POVM scheme de-
scribed in Sec. 5.6.2, with POVM elements

1 r 1 —r
_ 1 1
FO_E[TTQ ’ F1_§[—rr2

0 0

F =
2 0 1—72

1 . (5.220)

As in the previous example, we compute the conditional probabilities
p(y|x) = Tr(pIFy)v (xay =0, 172)a (5221)

namely the probability that Bob’s POVM measurement gives outcome v,
provided the state x was sent by Alice. We obtain

p(010) = 3. p(O1) = 21— V312 p(0]2) = (1 +3 1),
p(110) = &, p(U1) = 2A+ V322 p(1[2) = L(1- V32, (5222)
p(20) = 0. p1) = 31 -+2),  p(212) = 301,

We now compute p(z,y) = p(z)p(y|z). In this case, p(z,y) = %p(y|x) since
p(X=0) = p(X=1) = p(X=2) = 5. We then compute p(y) = >_, p(z,y)
and obtain

p(Y=0) = p(Y=1) = 21 ++2),  p(¥=2) = 11— (5.223)

Finally, we insert the above expressions for p(x), p(y) and p(z,y) into
Eq. (5.201), thus obtaining the mutual information 7(X:Y). The graph
of I as a function of the parameter r is shown in Fig. 5.14. Its maximum
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value Ihax ~ 0.585 is attained for r =~ 0.577. Note that I, is well below
the Holevo bound x = S(p) = 1.

1

0.8 - .

0.6 - 4

04 | 1

Fig. 5.14 The mutual information I(X:Y") for a message coded by means of the three

non-orthogonal states given by Eq. (5.217), with § = %ﬂ' and p = % Bob’s measurement

is described by the POVM operators (5.220). The Holevo bound gives I < 1.

5.12 Entanglement concentration and von Neumann en-
tropy

As we saw in Chaps. 3 and 4, entanglement is not only one of the most
intriguing features predicted by the quantum theory but also a fundamen-
tal resource for quantum information and communication. In particular,
in Chap. 4 we saw that entanglement enables apparently impossible tasks,
such as dense coding and quantum teleportation. We wish to stress that
teleportation is also interesting from the viewpoint of quantum computation
since it is a powerful tool for transferring quantum states between differ-
ent systems, as would be necessary in a quantum computer with several
independent units. Since faithful teleportation requires that Alice and Bob
share a maximally entangled EPR pair, it is important to devise methods
to distill maximally entangled states starting from partially entangled pairs
(later in this section we shall discuss how to quantify entanglement). These
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entanglement concentration techniques act on qubits that can be located
very far away and therefore only rely on the so-called LOCC; that is, on
local operations, possibly supplemented by classical communication. Lo-
cal operations are unitary transformations or (generalized) measurements
performed by Alice or Bob on their members of the shared non-maximally
entangled pair. Classical communication enables Alice and Bob to share
the results of the local quantum operations, in order to select the successful,
maximally entangled cases.

It is instructive to study in detail the following example of entangle-
ment concentration, devised by Bandyopadhyay (2000). We assume that
initially Alice and Bob share a pure entangled state. Taking into account
the Schmidt decomposition described in Sec. 5.2, we can write this state as

[V) s = @|00) 45 + BI11) 45, (5.224)

where, without any loss of generality, we may assume «, 3 to be real and
positive, and o > 3. We assume that Alice knows the coefficients «, 3 of
the Schmidt decomposition in advance and prepares an ancillary qubit in
the state

X)a = @l0) 4 +BI1) 4. (5.225)

Hence, the combined state of the three qubits is given by

[¥) = )4 @) ap = (al0)4 + BI1)4) © (]00) 45 + BI11) 45)

= a?(000) 4, 4,5 + @Bl01L) 4 4, 5 + @BI100) 4 4 g+ B°[111) 4 4,5
(5.226)

The first two qubits, denoted by A; and As, belong to Alice and the third
(B) to Bob. Alice performs a CNOT gate on the two qubits in her posses-
sion, A; being the control and As the target qubits. The resulting state
is

[¥) = a®[000) 4, 4,5 + @BIO01L) 4, 4, + ABI110) 4 4,5 + B7[101) 4 4,5
(5.227)
After interchanging the position of the first two qubits and writing the wave
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-function normalization in an appropriate manner, we have

2 2
|0) = \/WW)AQ ® (\/0;7754 00) 4,5 + \/afiTﬁ‘l |11>A13)

+V202F 1) 4, @ 2 (101) 4,5+ [10)1,5). (5228

Alice then performs a standard projective measurement of qubit Ay on
the basis {|0),|1)}. It is straightforward to see from Eq. (5.228) that she
obtains outcome 0 with probability (a* + 3%) or outcome 1 with probability
(2a%3%). In the latter case, Alice and Bob realize an EPR pair (the qubits
A; and B). In the first case, they obtain less entangled states. Thus, given
N non-maximally entangled states (5.224), the above technique produces
20232 N maximally entangled states. As shown by Bandyopadhyay (2000),
it is possible to iterate the procedure for the remaining N (1 —2a?3?) states
to improve its efficiency (the efficiency being defined as the fraction of EPR
pairs extracted). We note that classical communication is also required for
Alice to transmit the results of her measurements to Bob, in order to select
the successful cases.

It might appear paradoxical that local operations plus classical commu-
nication allow a concentration of entanglement, which is a purely quantum
non-local property. However, there is no real surprise if we remember that
quantum mechanics is a probabilistic theory and that a non-vanishing max-
imally entangled component is present in the state (5.224). This component
is quantified by the fidelity

F = aplt 1) apl” = |& (00 + (11])(al00) + 8111) |* = L(a+5)*,

(5.229)

where we have considered the EPR state [¢T) , 5 = ﬁ (]00)+]11)). There-

fore, the above entanglement concentration protocol selects this maximally
entangled component.

The previous example naturally raises the following questions: What is

the optimal entanglement concentration? Can we measure entanglement?

Nowadays, we can answer these questions unambiguously but only for bi-

partite pure states. First of all, a few definitions are needed.

Entanglement cost: Let us assume that Alice and Bob share many EPR
pairs, say |¢) 5, and that they wish to prepare a large number n of
copies of a given bipartite pure state [¢) 45, using only local operations

and classical communication. If we call k the minimum number of EPR

min
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pairs necessary to accomplish this task, we define the entanglement cost as
the limiting ratio k_. /n, for n — oo.

min

Distillable entanglement: Let us consider the reverse process; that is,
Alice and Bob share a large number n of copies of a pure state |¢) , 5 and

they wish to concentrate entanglement, again using only local operations

/

Thax denotes the maximum

supplemented by classical communication. If k

number of EPR pairs that can be obtained in this manner, we define the

/

! ax/T in the limit n — oo.

distillable entanglement as the ratio k

It is clear that k! . < k

max — Ymin-*
tions and classical communication to create entanglement, which is a non-

Otherwise, we could employ local opera-

local, purely quantum resource (it would be sufficient to prepare n states
|¥) 4 from k_ ;. EPR pairs and then distill &/, > k. EPR states). Fur-
thermore, it is possible to show that, asymptotically in n, the entanglement
cost and the distillable entanglement coincide and that the ratios &, /n
and k.. /n are given by the reduced single-qubit von Neumann entropies.
Indeed, we have

/

k. k
lim =% = lim /% = S(pa) = S(pn), (5.230)

n—oo n n— o0 n

where S(p4) and S(pp) are the von Neumann entropies of the reduced
density matrices pa = Trp ([¥)ap ap(¥]) and pp = Try (1) ap ap(¥l),
respectively. Therefore, the process that changes n copies of |¢) 45 into k
copies of |¢T) , 5 is asymptotically reversible. Moreover, it is possible to
show that it is faithful; namely,the change takes place with unit fidelity
when n — oo. The proof of this result is based on Schumacher’s quantum
data compression and can be found in Bennett et al. (1996a). We can
therefore quantify the entanglement of a bipartite pure state [¢) 45 as

E([¢) ap) = S(pa) = S(pn). (5.231)

It ranges from 0 for a separable state to 1 for maximally entangled two-qubit
states (the EPR states). Hence, it is common practice to say that the en-
tanglement of an EPR pair is 1 ebit. More generally, a maximally entangled
state of two subsystems has d equally weighted terms in its Schmidt decom-
position (d is the dimension of the Hilbert space of the smaller subsystem)
and therefore its entanglement content is logd ebits.

A natural extension of the discussion of this section is to consider bi-
partite mixed states, with pap = >, pi|¥)) s 4 5(¢|, instead of pure states.



Quantum Information Theory 323

However, mixed-state entanglement is not as well understood as pure-state
bipartite entanglement and is the focus of ongoing research (for a review,
see, e.g., Bruf}; 2002, Alber et al., 2001a and Plenio and Virmani, 2007).

5.13 The Peres separability criterion

Given a quantum state, pure or mixed, is it separable or entangled? As we
know (see Sec. 2.5), this question has a clear answer if we refer to pure states
and to bipartite entanglement: a pure state |¢) 45 of a bipartite system
A + B is separable if and only if it can be written as [¢) 45 = |a) 4 ® |8) 5,
with states |a) 4, and |3) 5 describing the components of the two systems.
A mixed state is said to be separable if it can be prepared by two
parties (Alice and Bob) in a “classical” manner; that is, by means of local
operations and classical communication. This means that Alice and Bob
agree over the phone on the local preparation of the two subsystems A and
B. Therefore, a mixed state is separable if and only if it can be written as

PAB = Zpk pak ® pBr, Wwith p > 0 and Zpk =1, (5.232)
k k
where par and ppy are density matrices for the two subsystems. A sep-
arable system always satisfies Bell’s inequalities; that is, it only contains
classical correlations.

Given a density matrix pap, it is in general a non-trivial task to prove
whether a decomposition as in (5.232) exists or not. We therefore need
separability criteria that are easier to test. Several such criteria have been
proposed but we shall limit ourselves to considering the Peres separability
criterion.

The Peres criterion provides a necessary condition for the existence of
decomposition (5.232), in other words, a violation of this criterion is a
sufficient condition for entanglement. This criterion is based on the partial
transpose operation. Introducing an orthonormal basis {|i) 4|a)z} in the
Hilbert space H 4p associated with the bipartite system A + B, the density
matrix pap has matrix elements (pag)ia;jg = 4(ilg{elpaBli)418) 5. The
partial transpose density matrix is constructed by only taking the transpose
in either the Latin or Greek indices (recall that Latin indices refer to Alice’s
subsystem and Greek indices to Bob’s). For instance, the partial transpose
with respect to Alice is given by

(PZ%)WM = (PAB)J-&W. (5233)
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Since a separable state pap can always be written in the form (5.232) and
the density matrices par and ppi have non-negative eigenvalues, then the
overall density matrix p4p also has non-negative eigenvalues. The partial
transpose of a separable state reads

Pl = ) Dk pax ® pBi- (5.234)
k

Since the transpose matrices ph, = p%, are Hermitian non-negative ma-
trices with unit trace, they are also legitimate density matrices for Alice.
It follows that none of the eigenvalues of PEAB is non-negative. This is a
necessary condition for decomposition (5.232) to hold. It is then sufficient
to have at least one negative eigenvalue of pgj‘g to conclude that the state
pAp is entangled.

As an example, we consider the so-called Werner state

(pw)as = 1(L=p) I +plv ™) (¥ |, (5.235)

where 0 < p <1, I is the identity in the Hilbert space Hap and |[¢p~) =
(J01) — |10)) is a state of the Bell basis (see Sec. 3.4.1). In the basis
{/OO ),|01), |10}, |11)} the density matrix (pw)ap reads

220 0 0
o 2 _2
(pw)ap = T (5.236)
0 -3 &4 0
1—
L 0 0 0 FF]
Taking the partial transpose yields
00 3]
0o 2 0 o0
Ta 4
= 5.237
(pw) 4B 0 0 % 0 ( )
1—
-5 0 0 ]
This latter matrix has eigenvalues Ay = Ao = A3 = # and \y = 1;3” . As

Ay < 0 for % < p <1, we may conclude that the Werner state is entangled
for these values of the parameter p.

It can be shown (M. Horodecki et al., 1996) that for composite states
of dimension 2 x 2 and 2 x 3, the Peres criterion provides a necessary and
sufficient condition for separability; that is, the state pap is separable if and
only if pgj‘g is non-negative. This result teaches us, for instance, that the
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Werner state is separable for 0 < p < % However, for higher dimensional
systems, states exist for which all eigenvalues of the partial transpose non-
negative, but that are non-separable (P. Horodecki, 1997). These states are
known as bound entangled states since they cannot be distilled by means of
local operations and classical communication to form a maximally entangled
state (M. Horodecki et al., 1998).

We stress that the Peres criterion is more sensitive than Bell’s inequal-
ity for detecting quantum entanglement; that is, there are states detected
as entangled by the Peres criterion that do not violate Bell’s inequalities
(Peres, 1996).

Exercise 5.16 Show that for a separable two-qubit state p4p the follow-
ing inequality is satisfied:

(AT)?) + ((AT,)?) + (AZ.)?) > 4, (5.238)
where ; = ol @ I®) 4 1@ @ o7 (A%;)2) = ((50)2) — (Z)? (i =
x,y, z) and the angle brackets denote the expectation value over p4p. Show
that this criterion allows us to conclude that the Werner state (5.235) is

entangled when % <p<l.

5.14 * Entropies in physics

The concept of entropy is very closely connected to those of energy, informa-
tion and chaos. It is a fundamental concept in both information science and
physics. There exist many entropy-like quantities. Here, we shall briefly
describe those we consider to be the most significant in physics (at least in
relation to this book) while endeavouring to elucidate the possible links be-
tween the different definitions of entropy. We shall also discuss the relation
between these entropies and the Shannon entropy.

5.14.1 * Thermodynamic entropy

In order to define the thermodynamic entropy, consider first the integral

B 5@
/ =, (5.239)

A

extended over a reversible transformation from A to B, where A and B
are two equilibrium states of a given system and §@Q is the amount of heat
absorbed reversibly by the system at temperature T. It can be proved



326 Principles of Quantum Computation and Information. II

that the above integral depends only on the initial and final states of the
transformation, and not on the transformation itself; that is, it is the same
for all reversible paths (transformations) joining A to B.

This property enables us to define a state function S(A), known as the
thermodynamic entropy.® The entropy S(A) of any equilibrium state A of
the system is defined by

A
S(4) = /O %, (5.240)

where the integration path is any reversible transformation from O to A and
O is some chosen reference equilibrium state. Note that the entropy S(A)
is only defined up to an arbitrary additive constant. Indeed, if we choose
a different reference state O" instead of O and define S'(A4) = (;4, %,
then S'(4) = S(A) + S’(0). Therefore, the additive constant S’(0) is
independent of the state A. The difference in the entropy of two states is,
on the other hand, completely defined. We have
B
S(B)—S(A) = / @ (5.241)
a T

It follows that, for any infinitesimal reversible transformation, the change
in entropy is

_ %9
- =

Note that, in contrast to dQ), dS is an exact differential.
Nerst’s theorem, also referred to as the third law of thermodynamics,

ds (5.242)

allows us to determine the additive constant appearing in the definition of
entropy. This theorem states that the entropy of every system at absolute
zero can always be taken equal to zero (note that here we assume that the
ground state of the system is non-degenerate). It is therefore convenient to
choose the state of the system at T' = 0 as the reference state in (5.240), so
that its entropy is set equal to zero. The entropy of any equilibrium state
A is now defined as follows:

S(A) = /A 0 (5.243)

T=0 T

Note that formula (5.243) is restricted to equilibrium states. However,
for systems composed of several parts, it is possible to define the entropy

5The thermodynamic entropy was introduced by Clausius in 1865.
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even for non-equilibrium states, in the case in which each part is itself in
an equilibrium state A; with corresponding entropy S;. The global entropy
of the system is then given by the sum of the entropies of all the parts:
S =735

An important property of entropy arises from Eq. (5.241). For a ther-
mally isolated system (that is, 6Q = 0) reversible transformations do not
change the entropy of the system: S(B) = S(A). On the other hand, it is
possible to show that for irreversible transformations we have

B
S(B)—S(A) > / % (5.244)
A
Therefore, for §Q = 0 we find
S(B) > S(4), (5.245)

that is, for any transformation occurring in a thermally isolated system,
the entropy of the final state can never be less than that of the initial state.
Thus, the state of maximum entropy is the most stable state for an isolated
system.

Let us consider a transformation from an initial state A to a final state
B of a system in contact with an environment that is maintained at a
constant temperature T. Applying Eq. (5.244), we obtain

Q= /AB 5Q < T[S(B) - S(4)]. (5.246)

The first law of thermodynamics, see Eq. (1.36), tells us that the work W
performed by the system is given by

W = —AE+Q, (5.247)

where AE = E(B) — E(A) is the variation of the internal energy of the
system. From Egs. (5.246) and (5.247) we obtain

W < E(A)— E(B)+T[(S(B)—S(4)]. (5.248)

This inequality sets an upper limit on the amount of work that can be
extracted from the transformation A — B. If such a transformation is
reversible, then the equality sign holds and the work performed saturates
the upper limit. It is useful to define the function

F=E-TS. (5.249)
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Then Eq. (5.248) becomes

W < F(A) - F(B) = —AF. (5.250)

For a reversible transformation we have W = —AF. Therefore, the quantity
F, known as the free energy of the system, plays a role analogous to that
of the internal energy E in a purely mechanical system (indeed, in such a
case, @ =0, so that W = —AEF).

5.14.2 * Statistical entropy

One of the principal purposes of equilibrium statistical mechanics is to
explain the laws of thermodynamics starting from the laws of molecular
dynamics. The question is: given the laws of motion and the interactions
between the molecules, what are the macroscopic properties of matter com-
posed of these molecules?

In the second half of the nineteenth century, Boltzmann and Clausius
tried to derive the second law of thermodynamics from mechanics. This
followed the line of Maxwell, who had already put forward the idea that
“the second law of thermodynamics has only a statistical certainty”.

As we discussed in the previous subsection, in a thermally isolated sys-
tem entropy can never decrease. Thus, the system evolution is such that
it never becomes more ordered. A familiar demonstration of this principle
is the flow of heat from hot to cold bodies until a uniform temperature is
reached.

Boltzmann related the notion of entropy to the logarithm of the num-
ber of possible different microscopic states compatible with a given macro-
scopic state. For instance, let us consider N/2 white molecules and N/2
black molecules (N > 1) inside a single vessel and distinguish the micro-
scopic state of each molecule by the fact that it is located in the left or
right half of the vessel. It is clear that there is a single microscopic state
corresponding to the macroscopic state “all white molecules in the left half
and all black molecules in the right half of the vessel” while there are many
more microscopic states corresponding to the macroscopic state “the white
and black molecules are equally distributed between the left and the right
halves of the vessel”. Therefore, the entropy, or “disorder”, is much larger
in the latter macroscopic state (see too the discussion on Maxwell’s de-
mon in Sec. 1.5.1). More precisely, Boltzmann defined the thermodynamic
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entropy as
S(E) = kplw(E), (5.251)

where kp is the Boltzmann constant and w(FE) is the measure of the energy
surface H(q,p) = F, where H is the system Hamiltonian and (g, p) denotes
the phase-space coordinates and momenta of the N molecules.

We point out that Boltzmann’s definition of entropy (5.251) assumes
that when a system is in thermodynamic equilibrium, all microscopic states
satisfying the macroscopic conditions of the system are equiprobable. This
implies that in equilibrium the density p(g,p) of points in phase space is
described by the microcanonical ensemble:

plg,p) = ) §(H(g,p) — E). (5.252)

Although Eq. (5.251) is a bridge between the microscopic and the macro-
scopic descriptions of matter, it only refers to states in thermodynamic
equilibrium. In order to obtain a definition of entropy that is also applica-
ble out of equilibrium, it is convenient to consider the canonical ensemble,
which is appropriate for the description of systems in contact with a heat
reservoir at temperature 7. In this case, taking into account the first and
the second principles of thermodynamics, one obtains (see, for instance,
Toda et al., 1983)

S(T) = kg(InZ + BE), (5.253)

where F is the average energy of the system, 3 = kBLT and

Z = / dqdp e=PH(@:P) (5.254)

is the partition function. Taking into account that

E = /dqdpp(q,p)H(q,p), (5.255)
with

1
plg,p) = Ee_BH(q’p), (5.256)
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we obtain the following from (5.253):

S

1
ki <1nZ+ﬁ§/dqdpe_ﬁH(q”’)H(q,p))

1
= kg <an -7 /dqdp e PH@P) ln(pZ))

—kp /dqdp p(q,p) Inp(q,p). (5.257)

Note that the statistical entropy S = —kp [dqdp p(q,p)Inp(g,p) can be
directly defined as the average value of — In p(g, p). In particular, in the case
of the microcanonical ensemble, p(g, p) is given by (5.252) and therefore the
statistical entropy (5.257) reduces to the thermodynamic entropy (5.251).

It can be shown that if on the energy surface we consider a distribution
p'(gq,p) different from the microcanonical distribution (5.252), then the en-
tropy S = —kp [dqdp p'(q,p) In p' (g, p) is smaller than the thermodynamic
entropy (5.251). We therefore conclude that the microcanonical distribu-
tion maximizes the statistical entropy.

It is interesting that the expression — [dgdp plnp can be viewed as a
measure of the “degree of uncertainty” associated with the measure dy =
pdgdp. Such uncertainty is small when p is peaked and large when p is
spread over the energy surface. We therefore obtain a simple statistical
interpretation of the entropy of, say, a gas: it has the meaning of the
degree of uncertainty in the microscopic state of the gas corresponding
to a given macroscopic state. Hence, we can exploit the fact that the
microcanonical ensemble maximizes the expression — [dgdp pln p to justify
its use in statistical physics.

Finally, we wish to point out that the expression — [dgdp plnp is the
analogue, for continuous variables, of the Shannon entropy — >, p; Inp;.

5.14.3 * Dynamical Kolmogorov—Sinai entropy

The Kolmogorov—Sinai (KS) entropy refers to the dynamical behaviour of
a system: it characterizes its dynamical stability and provides a measure
of the rate at which memory of the initial conditions is lost. We shall not
be concerned here with rigorous mathematical details and, instead, we give
below a simple operative definition for computation of the KS entropy.
Let us consider a partition @ of the energy surface into N cells and
attach an index j to each cell (j =1,..., N). We then follow the evolution
of an orbit at discrete times tg = 0, t; = T, to = 2T and so on. We
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associate the sequence of symbols (or letters) ig,i1,42,... with the orbit

if the orbit resides in cell iy at time tg, in 41 at t;, in 9o at t2 and so
Q)

1y--8m

on. Given a sequence (word) of m symbols s1,..., Sy, we call pg
the probability that such a sequence appears in the orbit. The probability
p(g?)gn can be computed in practice by following the orbit up to very long
times and counting the number of recurrences of the sequence si,..., Sm
in the sequence ig, i1, 42, ... associated with the orbit. After repeating the

same calculation for all m-letter words, we obtain the quantity

N
K@ (m) = =Y pl9  Wmpl® . (5.258)
S1,..38m=1

The KS entropy h is finally defined as

K@)
h = sup lim M
Q m—00 m

(5.259)

In practice, the entropy of a dynamical system is computed numerically
starting from a regular partition of the energy surface into D-dimensional
hypercubes of volume €”. In this manner, the entropy of the e-partition
can be computed as

K (m)
h(e) = lim ————=. 5.260
(€) = lim —— (5.260)
The dynamical entropy is then obtained as
h = lim h(e). (5.261)

e—0

The practical advantage of this procedure is evident: it is not necessary to
consider all possible partitions, but simply take hypercubes of small enough
volume. At any rate, the numerical calculation of the quantity h(e) is very
difficult. Indeed, the Shannon—-McMillan theorem states that the number
of “typical” m-words increases as exp(h(e)m). Thus, for chaotic systems
(h(€) > 0) the number of typical m-words grows exponentially with m, so
that it is very hard to compute K (6)(m). Intuitively, such an exponential
proliferation is related to the exponential instability of orbits. This intuition
is made rigorous by Pesin’s theorem, which states that

h=>Y X\, (5.262)

A >0
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where the sum extends over all positive Lyapunov exponents.® This result
is also useful for computing the KS entropy in a simple manner.

It is interesting to investigate what relation (if any) exists between the
Boltzmann—Gibbs statistical entropy

S(t) = —kB/dqdpp(qvp;t) In p(q,p; t) (5.263)

and the Kolmogorov—Sinai entropy. First of all we observe that, according
to Liouville’s theorem, the phase-space volume occupied by the distribu-
tion p(g, p;t) is conserved. This implies that the entropy S(t) does not vary
with time at all. However, the shape of the volume becomes increasingly
complicated, due to the chaotic dynamics. Thus, after smoothing of the
probability distribution, the volume occupied increases. The simplest man-
ner to perform such coarse graining is to divide the energy surface into N
cells, each of the same extension. Let p;(¢) denote then the probability that
the state of the system falls inside the cell i at time ¢. The coarse-grained
statistical entropy is now defined as

S.(t) = — Z pi(t) Inp;(t). (5.264)

For a chaotic system the coarse-grained distribution converges to the micro-
canonical distribution; that is, lim—,. pi(t) = % Therefore, the equilib-
rium value of the coarse-grained entropy (5.264) is S¢(00) = limy_,00 Se(t) =
InN. Let us assume that the initial, far-from-equilibrium distribution
p(q,p;0) is strongly peaked in phase space, for instance it is localized in
a single cell. In this case, the coarse-grained entropy S.(t) evolves from the
initial value S.(0) = 0 to the equilibrium value S¢(c0) = In N. There are
no rigorous mathematical results connecting the KS entropy to the coarse-
grained statistical entropy. Nevertheless, qualitative analytical arguments
as well as numerical results (see Latora and Baranger, 1999) show that, for
systems characterized by uniform (in phase space) exponential instability,
after an initial transient stage S.(t) increases linearly with a slope given by
the Kolmogorov—Sinai entropy. A simple example illustrating the connec-
tion between the growth rate of the coarse-grained statistical entropy S,
and the KS entropy h is shown in Fig. 5.15.

6For a dynamical system evolving in an n-dimensional phase space, there are n Lya-
punov exponents; for their definition see, e.g., Ott (2002). The largest Lyapunov expo-
nent is defined in Sec. 1.4.2.
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Fig. 5.15 Time evolution of the coarse-grained entropy S. (circles) for the classical
sawtooth map (see Sec. 3.15.3) on the torus 0 < 0 < 27, —7 < J < m, with K = /2.
The coarse graining is obtained by dividing the torus into N = 2.5x 10% square cells. The
initial density distribution uniformly covers a single cell centred at (6, J) = (%, 3?") The
dashed line has slope given by the Kolmogorov—Sinai entropy h = 1.13 (note that the
sawtooth map is a conservative chaotic system and there is a single positive Lyapunov
exponent A, so that, according to Pesin’s theorem, h = \).

5.15 A guide to the bibliography

A very useful introduction to the density operator formalism can be found
in Cohen-Tannoudji et al. (1977).

The Buzek—Hillery copying machine was introduced by Buzek and
Hillery (1996) (see also Gisin and Massar, 1997 and Brufl et al., 1998).
Quantum cloning in spin networks is discussed in De Chiara et al. (2004).
A review of quantum cloning machines, including the experimental demon-
strations of optimal quantum cloning, is given in Scarani et al. (2005).

The Kraus representation is discussed in Kraus (1983).

Interesting discussions of quantum measurements can be found in Bra-
ginsky and Khalili (1992), Gardiner and Zoller (2000), Namiki et al. (1997)
and Peres (1993).

Modern information theory started with the work of Shannon (1948),
while general references are Cover and Thomas (1991) and Gray (1990).

The quantum noiseless coding theorem is due to Schumacher (1995), see
also Barnum et al. (1996).

A simplified derivation of the Holevo bound can be found in Fuchs
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and Caves (1994). The communication of classical information over noisy
quantum channels is discussed in Holevo (1998) and Schumacher and West-
moreland (1997).

Basic references on entanglement distillation are Bennett et al.
(1996a,c). Introductions to the open problem of the quantification of mixed-
state entanglement can be found in Bruf (2002), Alber et al. (2001a) and
Plenio and Virmani (2007)). The behaviour of entanglement across a quan-
tum phase transition in spin systems has recently attracted much interest,
see Osborne and Nielsen (2002), Osterloh et al. (2002), Vidal et al. (2003),
Roscilde et al. (2004) and references therein. Such studies are based on
entanglement estimators introduced in Wootters (1998) and Coffman et
al. (2000). The link between the amount of entanglement involved in the
evolution of a many-body quantum system and its numerical simulation
by means of the density-matrix renormalization group is discussed in Vidal
(2004) and Verstraete et al. (2004). The role of entanglement in the speedup
of quantum computation is investigated in Jozsa and Linden (2003), Vidal
(2003) and Ortis and Latorre (2004). The Peres criterion was found by
Peres (1996); see also M. Horodecki et al. (1996) and Alber et al. (2001a).

Thermodynamic and statistical entropies are discussed in statistical me-
chanics textbooks, such as Huang (1987) and Toda et al. (1983). An intro-
duction to the Kolmogorov—Sinai entropy is Kornfeld et al. (1982).



Chapter 6

Decoherence

In practice, any quantum system is open; namely, it is never perfectly iso-
lated from the environment. The word decoherence, used in its broader
meaning, denotes any quantum-noise process due to the unavoidable cou-
pling of the system to the environment. Decoherence theory has a fun-
damental interest beyond quantum information science since it provides
explanations of the emergence of classicality in a world governed by the
laws of quantum mechanics. The core of the problem is the superposition
principle, according to which any superposition of quantum states is an
acceptable quantum state. This entails consequences that are absurd ac-
cording to classical intuition, such as the superposition of “live cat” and
“dead cat” considered in Schrodinger’s well-known cat paradox. The inter-
action with the environment can destroy the coherence between the states
appearing in a superposition (for instance, the “live-cat” and “dead-cat”
states).

In quantum information processing, decoherence is a threat to the actual
implementation of any quantum computation or communication protocol.
Indeed, decoherence invalidates the quantum superposition principle, which
lies at the heart of the potential power of any quantum algorithm. On the
other hand, decoherence is also an essential ingredient for quantum infor-
mation processing, which must end up with a measurement by converting
quantum states into classical outcomes. We shall see that decoherence plays
a key role in the quantum measurement process.

In this chapter, we shall describe decoherence using various tools, from
the quantum-operation formalism introduced in the previous chapter to the
master-equation and the quantum-trajectory approaches. We shall start
with simple single-qubit noise models and end with a detailed description
of the effects of various noise sources (coupling to the environment, noisy

335
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gates, imperfections in the quantum computer hardware) on the stability
of quantum computation. In parallel, we shall discuss the fundamental
issue of the quantum to classical transition, focusing on the role played by
decoherence and chaotic dynamics.

6.1 Decoherence models for a single qubit

In this section, we shall study quantum-noise (decoherence) processes that
can act on a single qubit. A general formulation of the problem, in terms of
Kraus operators, will be given in Sec. 6.1.1. Before doing so, it is instructive
to consider a very simple decoherence model, drawn in Fig. 6.1. Here
the environment consists of a single qubit and the system—environment
interaction is represented by a CNOT gate. Let us assume that initially
the system is in a pure state, |¢)) = «|0) + §|1), corresponding to the
density matrix p = |¢)(¢|, whose matrix representation in the {]0),|1)}

basis is given by
al?> ap*
p = | *| 5 |- (6.1)
a*B Al

The diagonal terms of p are known as populations (see Sec. 5.1), and give the
probabilities to obtain, from a polarization measurement along the z-axis,
outcomes 0 or 1, respectively. The off-diagonal terms, known as coherences,
appear when the state |i) is a superposition of the states |0) and |1). They
are completely destroyed by the decoherence process drawn in Fig. 6.1.
Indeed, this quantum circuit changes the initial global system—environment
state,

@) = [¢)@0) = (a|0) + 5]1))[0), (6.2)
into the final state
|T") = «|00) + 3[11). (6.3)

Note that the CNOT interaction has entangled the qubit with the environ-
ment, as the state |¥’) is non-separable. The final density matrix p’ of the
system is obtained after tracing over the environment:

/ ! ! |a|2 0
= Tr,,, |U)(V] = : 6.4
pr= Tron, [W) (V'] [ 0 IﬁIQ] (6.4)
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This decoherence process has a particularly appealing interpretation:
it is evident from Eq. (6.3) that the environment has learnt, through the
CNOT interaction, what the state of the system is. Indeed, if the state of
the system is |0), the state of the environment remains |0); on the other
hand, if the state of the system is |1), the state of the environment is flipped
and becomes |1). Therefore, the CNOT gate is basically a measurement
performed by the environment on the system. The information on the
relative phases of the coefficients o and 3 appearing in the initial state |)
is now hidden in the system—environment quantum correlations. Since we
do not keep records of the state of the environment, this information is lost
for us. In short, information leaks from the system into the external world.

10 .

Fig. 6.1 Quantum circuit modelling complete decoherence.

6.1.1 The quantum black box

Let us consider a two-level system (qubit) interacting with a generic phys-
ical system. This system is known as a quantum black boz, and its action
on the qubit is described in terms of a quantum operation S:

p—p =8p) =Y EpEl, with Y ElE =1, (6.5)
k k

where the Kraus operators are denoted by E, . It is convenient to write the
states p and p’ in the Bloch-sphere representation (5.32):

p=3I+r-o) and p = i(I+7" o), (6.6)

where the Bloch vectors r = (z,y,2) and / = (2/,y/,2’) are such that
|r],|7’| € [0,1]. The transformation

r—r =Mr+c (6.7)

is known as an affine map. To find the matrix M and the vector ¢ as
functions of the Kraus operators E,, it is convenient to expand the Kraus
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operators over the basis {I, 01 = 04, 02 =0y, 03 = 0.}

3

Ek = vl + Zaklal. (68)
=1

After a lengthy but straightforward calculation (see exercise 6.1), we obtain

3 3
Mjy, = Z [aljafk + ajjak + (|’yl|2 - Z |alp|2>5jk
p=1

=1

3
+iY €k (%afp - %*alp)] , (6.9)

p=1
3
. 2 : *
Cj = 21 €ilm Akl ALy, - (610)
k,l,m=1

In these expressions, €;i; is the Levi-Civita antisymmetric tensor, with
€;x1 = 0 if the three indices are not all different, €123 = €231 = €312 = 1 and
€213 = €321 = €132 = — L.

Exercise 6.1 Check Egs. (6.9) and (6.10).

In order to clarify the meaning of the affine map (6.7), we may take
advantage of the polar decomposition

M = 08, (6.11)

where S is a symmetric, non-negative matrix and O an orthogonal matrix.
Hence, in the affine map S deforms the Bloch sphere into an ellipsoid, while
O rotates it and ¢ displaces its centre.

Exercise 6.2 Show that the polar decomposition (6.11) is possible for
any real matrix M.

We need to determine 12 parameters to describe the action of a generic
quantum black box on a two-level system: 6 parameters to determine the
symmetric 3 X 3 matrix S, 3 for the orthogonal matrix O and 3 for the
displacement c. Note that the values taken by these parameters must be
such that 7’ is still a Bloch vector; that is, p’ is still a density matrix.

The number of independent parameters in the single-qubit case is in
agreement with the general result of Sec. 5.4: we need N* — N2 independent
real parameters to characterize a quantum operation acting on an N-level
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quantum system. In particular, we have 12 parameters in the single-qubit
case (N = 2).

6.1.2 Measuring a quantum operation acting on a qubit

We wish to measure the 12 parameters that determine the quantum oper-
ation S mapping the single-qubit density matrix p to p’ = S(p). For this
purpose, we consider the experiment drawn schematically in Fig. 6.2. The
source S emits a large number of qubits, whose states are described by the
density matrix p. The qubits enter the quantum black box and come out in
states described by a different density matrix, p’. A detector D measures
the density matrix p’, following the procedure described in Sec. 5.5.

I

p

p
> D

BB

Fig. 6.2 A schematic diagram of the measurement procedure used to determine the
effect of a quantum black box (BB) on a qubit.

The affine map (6.7) reads

! My Mo M3 x C
Yy | = | Mar Mg Mo yl+ eyl (6.12)
4 M3y M3y Ms33 z c:

where we assume the parameters M;; and c¢; to be time-independent;
namely, the quantum black box always acts in the same manner on ev-
ery two-level system. We wish to determine these parameters. To this end
it is sufficient to consider pure initial states ) = «|0) + (]|1). The corre-
sponding density matrix p = [¢)(¢)| is given by Eq. (6.1). Note that in the
Bloch-sphere representation

p=3 (6.13)

r+iy 1—=z

1+2z x—iy ]

and so the coordinates (z,y, 2) are related to « and 8 as follows:

oft = Ya—iy). o =40+2). I8P =302 (614)
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To determine the 12 parameters M;; and c;, we need to prepare different,
appropriate, initial states, for instance:

(i) 1) =10) (a=1,8=0,2=y=0, z=1). As described in Sec. 5.5, if
we have at our disposal a large number of identically prepared qubits
in the state |11) and entering the quantum black box, we can measure
the final density matrix p} and determine its Bloch coordinates z}, v}
and z{, up to statistical errors. From Eq. (6.12), we obtain

) = Mz + cq, Y1 = Mag + ¢y, 2y = Mzz+c,. (6.15)
(ii) |¢2) =11) (¢ =0,8=1, 2=y =0, z=—1). In this case,
3312 = —Mi3+ cg, yé = —M23+Cy, Zé = —Msz3+c,. (616)

We can now determine the 6 parameters M;3 and ¢; from Egs. (6.15)
and (6.16).
(i) [ts) = L-(0) + 1)) (@ = %, f= L, o =1,y = 2 =0)

:L'g = M1 + g, yg = Moy + ¢y, Zg = M3, + c,. (6.17)
(iv) [9s) = £(0) +il1)) (a =, f= 5, y=1, 2= 2 =0).
zy = Mia + cq, Yy = Mo +cy, 2y = Msa+c,. (6.18)

The remaining 6 unknown parameters M;; and M;s are computed using
Egs. (6.17) and (6.18).

In principle, the method described in this section can be extended to
quantum black boxes acting on many-qubit systems; already though with
two qubits (a Hilbert space of dimension N = 4), there are N* — N? = 240
real parameters to be determined.

6.1.3 Quantum circuits simulating noise channels

A useful representation of quantum operations is obtained using quantum
circuits, in which the environment is represented by ancillary qubits.

Let us consider the circuit drawn in Fig. 6.3. We have a single-qubit
system plus an environment with two ancillary qubits. We assume that
initially the system is described by the density matrix p, while the ancillary
qubits are in the pure state

[¥) = «|00) 4+ 3|01) + v|10) 4 6]11), (6.19)
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with the normalization condition |a|? + |3]2 4 |y|*> + |6]*> = 1. The initial
total density matrix (system plus environment) is given by

la?p
161%p

, (6.20)
%0

Pl = |yl @ p =
6%p

where, to simplify the expression, we have denoted by .. the matrix blocks
whose expressions are not needed in subsequent calculations.

'

|

P 1% 1% 1% P

Fig. 6.3 A quantum circuit implementing the deformation of the Bloch sphere into an
ellipsoid centred at the origin of the Bloch sphere with axes directed along z, y and z.

The quantum circuit in Fig. 6.3 implements the unitary transformation

o, O
0 00
U= % : (6.21)
0 0 0,0
0 I

where [ is the 2 x 2 identity matrix. This means that, as shown in Fig. 6.3,
Oy, Oy, 0z, or I are applied to the bottom qubit if the two upper qubits are
in the states |00), |01), |10), or |11). The final three-qubit state (system
plus environment) is described by the density matrix

P = UplUT. (6.22)

Note that the system is now, in general, entangled with the environment.
After tracing over environmental qubits, we obtain the final state of the
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system:
tot
P = oo piin”) = S(p)
= laffoupal + |80y pal + [y [P0 pol +[5]p. (6.23)

If we introduce the Kraus operators

E, = |a|og, E, = |Bloy,

(6.24)
E3 = |'Y|O-Za EO = |5|I7

we have p/ = E?:o EipEZ . The transformation induced by the Kraus op-
erators (6.24) can be clearly visualized in the Bloch-sphere representation.
Let us consider the Bloch vectors r and r’ associated with the density ma-
trices p and p/, respectively (see Eq. (6.6)). It is easy to check by direct
computation that

[ 1—z a+i

Ozpol = oypo, = 1 iy 1+zy (6.25a)
[ 12 —(z+iy)

aypa;; = oypoy = 3 iy 142 | (6.25Db)
[ 14z (i

Uzpai = 0,p0, = % Z (z=1y) . (6.25¢)
| —(z+iy) 1-z

Taking into account that 6] =1 — |a|?> — |B]? — |v|?, we obtain
"= 12187+ 11?)] «,
v = [L=2(h’+laP)]y, (6.26)
7= [1-2(a?+|8%)] 2.

These expressions tell us that the Bloch sphere is deformed into an ellipsoid,

8
I

centred at the origin of the Bloch sphere and whose axes are directed along
x, y and z. As we shall see in the following, depending on the choice of
the parameters |a|, || and |v|, many interesting noise channels can be
obtained.

We note that, as can be clearly seen from Eq. (6.26), the state p’ only
depends on the amplitudes of the coefficients «, 8, v and § in the state (6.19)
and not on their phases. This implies that, for any density matrix describing
the initial state of the two ancillary qubits and having diagonal terms equal
to |al?, |BI%, |v]? and |§]?, the circuit of Fig. 6.3 would implement the
quantum operation (6.23).
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We shall show in the following subsections that commonly investigated
noise channels such as the bit-flip or the phase-flip channel can be obtained
as special cases of the circuit in Fig. 6.3.

6.1.4 The bit-flip channel

The bit-flip channel is obtained by taking 8 = v = 0 in the state (6.19). In
this case Eq. (6.23) reduces to

P = 8S(p) = |a|*oupal + (1—[a]?) p, (6.27)

and the transformation p — p’ =3, Eka); can be implemented by means
of the Kraus operators

Ey = /1 —|of?], E, = |a|oy. (6.28)

We point out that this noise channel flips the state of a qubit (from |0)
to |1) and wice versa) with probability |a|?. Indeed, the state p = |0)(0]
is mapped into p’ = |a|?|1)(1] + (1 — |a|?)|0)(0|, while p = |1)(1| becomes
p' = 1af?0)(0] + (1 = [a)[1)(1].

The deformation of the Bloch-sphere coordinates, given by Eq. (6.26),
simplifies as follows:

¥ =, y = (1-2la]*)y, 2= (1-2[a) 2. (6.29)

Hence, the Bloch sphere is mapped into an ellipsoid with z as the symmetry
axis. Note that the x component is not modified by the bit-flip channel since
the eigenstates |£) = %(|O) + |1)) of the Kraus operator E; are directed
along the z-axis of the Bloch sphere and S(|£)(£|) = |£)(£].

A quantum circuit implementing the bit-flip channel is shown in Fig. 6.4.
Note that a single auxiliary qubit is sufficient to describe such a quantum
operation (in this quantum circuit we take |¢) = «|0) + §|1) with |§] =

V1=laf).

Fig. 6.4 A quantum circuit implementing the bit-flip channel.
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6.1.5 The phase-flip channel

The phase-flip channel is obtained by taking a = # = 0 in the state (6.19).
In this case Eq. (6.23) reduces to

p=8(p) = WPopol+ (1 =) p, (6.30)

and the superoperator p — p’ = S(p) can be realized by means of the Kraus
operators

Ey = /1—-]v|?1, E, = |y|o.. (6.31)

This noise channel introduces a phase error with probability |y|%. In-
deed, if we apply the superoperator S to a pure state |p4) = p|0) + v|1),
described by the density matrix p = @) {4 |, we obtain

P =8(p) = IPle=) (e + (1= 7?]) lo+) (et], (6.32)

where |¢_) = p|0) —v|1). Note that |p_) differ from |4 ) only in the rela-
tive sign of the coefficients in front of the basis states |0) and |1). Therefore,
this noise channel has no classical analogue.

The deformation of the Bloch-sphere coordinates, given by Eq. (6.26),
simplifies as follows:

= (1-2]y?) =, y = (1-2]v*) v, 2 = z. (6.33)

Hence, the Bloch sphere is mapped into an ellipsoid with z as symme-
try axis. Note that the component z is not modified by the phase-flip
channel since the eigenstates of the Kraus operator E; (|0) and |1)) are di-
rected along the z-axis of the Bloch sphere, and we have S(]0)(0]) = |0)(0|,
S(1){1)) = [1)(1].

A quantum circuit implementing the phase-flip channel is shown in
Fig. 6.5 (in this quantum circuit, the initial state of the auxiliary qubit

is [¢)) = 7/0) +6[1), with [6] = /1 = |]?).

Iw>f

Y o, Y

|

Fig. 6.5 A quantum circuit implementing the phase-flip channel.
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As we saw in Sec. 5.4, there is a freedom in the Kraus representation;
namely,we can choose different sets of Kraus operators giving rise to the
same quantum operation. An example is shown in Fig. 6.6: this circuit
leads (see exercise 6.3) to the Kraus operators

Bl " O (6.34)
o 0 cosd |’ ' 0 sinf .
and we have
1 1
p=5(p) =Y EipE] =) FipF], (6.35)
i=0 i=0

provided cos ) = 1—2|v|2. It is easy to check that { Ey, E1} and {Fy, F} } are
connected by a unitary transformation, as it must be the case for different
sets of Kraus operators representing the same superoperator. Indeed, we
have F; = 231:0 Wi, E;, where the unitary matrix W reads

Wo— cosg sing ] . (6.36)

0 [}
sm§ 0082

Exercise 6.3 Show that the quantum circuit of Fig. 6.6 induces a quan-
tum operation p — p’ = FOpFJ + FlpFlT, where Fy and F; are the Kraus
operators written in Eq. (6.34).

0) —— —-6/2 0/2

|

P P

Fig. 6.6 A second circuit implementing the phase-flip channel. The gates labelled +6/2
stand for the rotation matrices Ry (F0) (see Eq. (5.62)).

6.1.6 The bit-phase-flip channel

The bit-phase-flip channel is defined by setting a = v = 0 in the state
(6.19), so that Eq. (6.23) reduces to

§ = S(p) = |BlPoypol + (1-162) p. (6.37)
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and the superoperator p — p’ = S(p) can be expressed in terms of the
Kraus operators

Ey = /1— 821, Ei = |Bloy. (6.38)

This channel induces both bit flip and phase flip. Indeed, it maps the state
©|0) + v|1) into u|1) — v|0) with probability |3|*.
The transformation of the Bloch-sphere coordinates is given by:

o= (1=28%2, Y =y = (1-28P= (6.39)

Hence, the Bloch sphere is mapped into an ellipsoid symmetric about the
y-axis.

A quantum circuit implementing the bit-phase-flip channel is shown in
Fig. 6.7 (in this quantum circuit, the initial state of the auxiliary qubit is

[¥) = BI0) + 6[1) with [6] = /1 —[5[?).

Fig. 6.7 A quantum circuit implementing the bit-phase-flip channel.

Exercise 6.4 Study the quantum-noise operation implemented by the
circuit of Fig. 6.8, where U is a generic 2 X 2 unitary matrix and |¢) =
a|0) + [|1) a generic single-qubit pure state.

Iw>f

p U p

Fig. 6.8 A quantum circuit implementing a single-qubit quantum-noise operation.

6.1.7 The depolarizing channel

The depolarizing channel is defined by setting |a|? = |3|*> = |7|*> = p/3 in
the state (6.19). We can apply the results of Sec. 6.1.3 to this special case
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and obtain

[

p = 3plowpol + oypol +opol] + (1 - p)p. (6.40)
In the Bloch-sphere representation,
v =(1-3p)r. (6.41)

Therefore, the Bloch vector is contracted by a factor (1— %p), independently
of its direction. The centre of the Bloch sphere, » = (0,0,0), is the fixed
point of this noise channel. If p = %, then v/ = (0,0,0) for any r. This
corresponds to complete depolarization since, as we saw in Sec. 5.1.1, for
this state the qubit polarization along any direction is equal to zero.

The quantum operation (6.40) can be implemented by means of the
Kraus operators

Eo=\1-pI, B =\/ipos,, Ex=/ipa, Ez=/ipo..

(6.42)
6.1.8 Amplitude damping
The amplitude-damping channel is defined by
o = S(p) = EopE} + ErpE], (6.43)

where the two Kraus operators Fy and F; read
1 0 0
By = B |V (6.44)
0 /1-p 0 0

Using this definition, it is straightforward to obtain

poo +pp11 V1=ppo1
VI-ppio (1-p)p11

where p;; are the matrix elements of the density operator p in the basis
{]0), |1)}. Equation (6.45) implies that the Bloch-sphere coordinates change
as follows:

¥ =\1-pa, ¢y =+1-py, 2 =p+(1-p:= (6.46)

Therefore, the Bloch sphere is deformed into an ellipsoid, with axes directed

[

(6.45)

along z, y and z and centre at (0,0,p). It is clearly seen from Eq. (6.46)
that p represents the probability that the state |1) decays to the state
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|0) (damping probability). Indeed, if we start from p = |1)(1]; that is,
r = (0,0,—1), we obtain ' = (0,0,p — (1 — p)), corresponding to p’ =
pl0}(0] + (1 — p) 1)1

It is instructive to consider the case in which the amplitude-damping
channel is applied repeatedly. In this case, we obtain

AV = (1=p)"pu = "0 gy, (6.47)

where n denotes the number of applications of the channel. Therefore, the
probability p(ln) to find the qubit in the state |1) drops exponentially with
the number n of channel iterations:

pi" = (1 —p)pl? = entn@ppl®), (6.48)

This means that, for n — oo, the system is driven to p(>) = |0)(0]. We
should stress that, even though quantum noise generally transforms pure
states into mixed states, in this case, whatever the initial state is (pure or
mixed), we always end up with the pure state |0).

Of course, it is possible to give a continuous time version of this result.
If p = T'(At), t = n(At) is time and we let At — 0, then

pi(t) = Jim (1=TAHAp1(0) = e~"py(0). (6.49)

Therefore, I' represents the transition rate for |1) — |0).

Exercise 6.5 Show that the amplitude-damping channel can be modelled
by means of the circuit in Fig. 6.9, where the gates labelled £6/2 stand for
the rotation matrices R, (F6) (see Eq. 5.62), with cosf = |/p, sinf =

VI=p.

10) —— -6/2 6/2

|

Y N, p

Fig. 6.9 A quantum circuit implementing the amplitude-damping channel.
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6.1.9 Phase damping

The most general single-qubit density matrix can be written as

lep O‘], (6.50)

o 1-p

where the diagonal, real elements p and 1 —p (0 < p < 1) represent the
probabilities of finding the qubit in the state |0) or |1), respectively. The off-
diagonal elements (quantum coherences) have no classical analogue. Note
that we have |a| < 1/p(1 —p). As we shall see in the following, the effect of
the phase-damping channel is to induce a decay of the off-diagonal terms,
a process known ad decoherence.! Therefore, as we shall discuss in detail
later in this chapter, the phase-damping channel plays a central role in the
transition from the quantum to the classical world.

Two phenomenological models leading to decoherence are the simple
example discussed at the beginning of Sec. 6.1 and the quantum circuits
implementing the phase-flip channel, introduced in Sec. 6.1.5. Of course,
these models are phenomenological and do not represent the physical mech-
anisms inducing decoherence any better than a resistance in an electric cir-
cuit represents the scattering processes undergone by conduction electrons.
It is therefore useful to justify decoherence by means of a simple model,
leaving a more complete and formal development for the subsequent sec-
tions. Our qubit is described by the density matrix (6.50), and we assume
that quantum coherences are initially non-zero (o # 0). We model the
effect of the interaction with the environment as a rotation (phase kick)
through an angle 6 about the z-axis of the Bloch sphere. This rotation is
described, as we saw in Sec. 3.3.1, by the matrix

R.(0) = [e_ig 0 ] (6.51)

We assume that the rotation angle is drawn from the random distribution

1 02
0) = e 1x. 6.52
p(0) 7 (6.52)

Therefore, the new density matrix p’, obtained after averaging over 6, is

IHere it is useful to remind the reader that, more generally, the word decoherence
is used to refer to any quantum-noise process due to coupling of the system with the
environment.
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given by

+oo
p= / df p(9)R-(0)pRL(0) = [ (6.53)

— 00

p  ae
a*e ™ 1—p .

This means that the Bloch-sphere coordinates are mapped by the phase-
damping channel as follows:

¥ = e, y = ey, 7 =z (6.54)
Since these transformations coincide with those of Eq. (6.33) (provided we
set 1 — 2]y = e~ in that equation), the phase-damping channel is the
same as the phase-flip channel.

Exercise 6.6 Check Egs. (6.53) and (6.54).

Notice that, in the case in which the phase-damping channel is applied
repeatedly, coherences drop to zero exponentially: a, = e *"q, where
n denotes the number of applications of the channel. Similarly to what
was discussed for the amplitude-damping channel, it is possible to give a
continuous time version of the coherences decay. If A = I'(At), t = n(At)
is time variable and we let At — 0, then a(t) = e I*a(0). Therefore, T
represents the decoherence rate associated with this noise channel.

Exercise 6.7 Study the transformation of the Bloch sphere induced by
the circuit of Fig. 6.10, where

Co 0 -5, 0
0 ¢ 0 -8

D = ! P (6.55)
So 0 Co 0

0o S 0 Gy
with C; = cosb;, S; =sin#b;, (i =0,1), and
U = exp [—zg (n- U)] , (6.56)
where n is a unit vector and £ a real number.
Exercise 6.8 Determine how many quantum-noise operations, charac-

terized by 4 x 4 unitary matrices Uy, Us, ... (see Fig. 6.11) do we need to
generate a generic affine map p — p’ = S(p)?
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10) ——
D
P — ur—p

|

Fig. 6.10 A quantum circuit modelling the noise channel described in exercise 6.7.

10) — —  10) — —
U1 U2 ces
P — p

Fig. 6.11 A quantum circuit modelling the noise channel described in exercise 6.8.

Exercise 6.9 Show that the final density matrix p’ in the quantum circuit
of Fig. 6.12 is independent of the unitary matrix V' (in this circuit, U is a
generic 4 x 4 unitary matrix).

10) — vV —
U
P Y

|

Fig. 6.12 A quantum circuit modelling the noise channel described in exercise 6.9.

Exercise 6.10 Study the quantum-noise operation implemented by the
quantum circuit of Fig. 6.13, in the cases in which the unitary matrix U is
given by (i) U = 04, (ii) U = é([:l:iaj) (J==x,y,2).

6.1.10 De-entanglement

Entanglement is arguably the most peculiar feature of quantum systems,
with no analogue in classical mechanics. Furthermore, it is an important



352 Principles of Quantum Computation and Information. II

0)——-6/2 0/2

|

P — U N U**P

Fig. 6.13 A quantum circuit modelling the noise channel described in exercise 6.10.

physical resource for quantum communication and computation. It is there-
fore important, both for the problem of quantum to classical correspondence
and for quantum information science, to investigate the problem of the sta-
bility of entanglement in the presence of decoherence effects.

In this section, we shall consider the model drawn in Fig. 6.14. In this
quantum circuit, the two most significant qubits are initially prepared in a
maximally entangled state, say the Bell state

%) = 25 (101) +]10)). (6.57)
This corresponds to the density matrix
p = %(|01><01| + [10)(10] + |01)(10] + [10)(01]), (6.58)

whose matrix representation in the basis {|00), |01),|10),]11)} is

0000
0110

-1

P=210 110 (6.59)
0000

U
10> — —

Fig. 6.14 A quantum circuit modelling de-entanglement (loss of the entanglement be-
tween the two upper qubits due to the coupling with the third qubit, which represents
the environment).

To be concrete, we consider the case in which the interaction with the
environment (i.e., the third qubit) is modelled by the phase-flip channel
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described in Sec. 6.1.5. We have

1
p="Y FPp(F), (6.60)
i=0

where the Kraus operators FO(Q) and F1(2) are defined as

1 0 0 O
10 1 0 0 cosf@ 0 O
Y =10k = ® = ,
01 0 cos@ 0O 0 1 O
0 0 O coséb
- ~(6.61)
0O 0 0 O
(2) 10 0 0 0 sinf 0 O
Fl =IQF = & . = )
01 0 sinf 0O 0 0 O
0

10 0 sin@ |

Fy and Fy being the Kraus operators (6.34) introduced in Sec. 6.1.5 for the
phase-flip channel. It can be seen by direct calculation that

0 0 0 0
0 1 cosf O
=1 6.62
r 210 cost 1 0 ( )
0 0 0 0

For cosf = 1, we have p’ = p; that is, the final state is identical to the
initial, maximally entangled, Bell state. For cosf = 0, the final state is
separable. Indeed, we have

p" = 3(]01)(01] + [10)(10]), (6.63)

and this density matrix corresponds to the statistical mixture of the separa-
ble states |01) and |10), taken with equal probabilities. In the intermediate
case 0 < cosf < 1, we have partial loss of entanglement, corresponding to
the partial loss of quantum coherence discussed in Sec. 6.1.5.

Exercise 6.11 Study the errors introduced in the teleportation and
dense-coding protocols when the partially entangled state (6.62) is used
instead of a Bell state.

It is interesting that, if we only consider a member of the Bell pair, its
state is preserved with unit fidelity by the phase-flip channel. Indeed, the
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reduced density matrix describing this state is %I , which is not modified by
this noise channel. On the other hand, as seen above, the Bell pair (6.59)
is corrupted, even though the phase-flip noise acts only on a member of the
pair (the second line in Fig. 6.14). We can intuitively understand this result
by saying that it is more difficult to preserve both the state of a system
and the entanglement of the system with the outside world (here, the other
member of the Bell pair) than just the state of the system. This intuition
can be formalized, see Schumacher (1995).

6.2 The master equation

The master equation describes the continuous temporal evolution of open
quantum systems. In this section, we shall discuss two derivations of this
equations. The first (Sec. 6.2.1) is based on a microscopic model and gives
a clear physical picture of the approximations made to arrive at the master
equation. The second (Sec. 6.2.2) clarifies the link between the master-
equation approach and the quantum-operation formalism.

Before going into technical details, let us state the main approximations
involved in deriving the master equation:

(i) Born approzimation — The environment is large and practically unaf-
fected by interaction with system.

(ii) Markov approzimation — The system density matrix p(t) evolves under
a first-order differential equation in time. Therefore, the knowledge of
the density matrix p(tp) at a given time to is sufficient to determine
p(t) at any time ¢ > ¢y. We stress that this is a non-trivial requirement
since the system interacts with the environment, and so, in general, the
environmental state at time ¢ty depends on the system density matrix
p(t') at earlier times ¢ < to. In other words, the environment acquires
information on the system, but this information can flow back, at least
in part, to the system. Therefore, the knowledge of the system density
matrix p(to) at time ¢o is in general not sufficient to determine p(t) at
later times. Indeed, we have

p(to + dt) = TI‘env [ptot (tO + dt)]
= Tl"enV[U(to + dt, to) Ptot (to) U]L (to + dt, to)], (664)

where pyot is the density matrix of the system plus environment, whose
evolution from time o to time tp + dt is driven by the unitary oper-
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ator U(tg + dt,to). As stated above, piot(to) depends on p(t), for all
times ¢ < tg. This means that we cannot fully determine p(tg + dt)
from p(ty) alone. In the Markovian approximation, we assume that
the environment is memoryless; that is, its state at time ¢y is essen-
tially unaffected by the history of the system. This means that the
information flow is essentially one-way, namely from the system to the
environment. The Markovian approximation provides a good descrip-
tion of quantum noise if the memory of any effect that the system has
on the environment is limited to a time scale much shorter than the
time scales of interest for the dynamics of the system.

6.2.1 * Derivation of the master equation

Let us consider a system in interaction with the environment (also known
as a bath or reservoir). The most general Hamiltonian describing this
situation reads as follows:

H=Hs®Ip+Is®Hr+ Hsp = Ho + Hgpg, (6.65)

where Hg, Hgr and Hgpr describe the system, the reservoir and the inter-
action, respectively.
We call x the density matrix describing the system plus reservoir, and

p=Trpx (6.66)

the reduced density matrix describing the system. As we saw in Sec. 5.1,
the evolution of x is governed by the von Neumann equation:

ihy = [H,x]. (6.67)

We assume that interaction is weak so that we shall be able to separate
the fast motion, due to Hy = Hg + Hpg, from the slow motion, due to
the interaction Hgg. For this purpose, we exploit the so-called interaction
picture, defining

ihUs = HgUg, Us(0) = Is,

ihUr = HrUg,  Ug(0) = Ig, (6.68)
U = Ug ® Ug, (6.69)
x = UlyU, Hsr = UTHgrU. (6.70)
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After substitution of (6.68-6.70) into (6.67), we obtain

iy = [ﬁSR,;(} , (6.71)

which is equivalent to the integro-differential equation

W) = 50+ 5 [ ar [fsnn. 3] (6.72)

where x(0) = x(0). We now insert this expression into the right-hand side
of (6.71) and obtain

1) = o [Ase0x)] - 35 [ ar [Fsn(0, [Frsnt). %)) 679

Let us compute Try(x). We have
Trp(X) = Trp(UIXU) = UL Tep(UixUR)Ug = UL pUg = 5, (6.74)

where we have used the definitions (6.66) and (6.69) and the cyclic property
of the trace, leading to TrR(kaUR) = TrR(XURU};) = Trp(x). We can
now trace Eq. (6.73) over the environmental degrees of freedom and obtain

i) = e { [Asn) x0)]}
L /Ot dar Trg { [Hsn(t), [Asa(r). ()]} (679)

This equation is exact. We now need a few assumptions:

(i) First of all, we assume that at time ¢ = 0 the system and the environ-
ment are not entangled:

x(0) = p(0) @ pr, (6.76)
where p and pr denote the system and environment density matrices,
respectively.

(ii) We also assume that
TrR{[ﬁSR;X(O)}} = 0. (677)

If this is not the case, Trp{[Hsr, x(0)]} is an operator acting on the
system alone. Therefore, it is possible to show that we can always
redefine Hg and Hgpr (while keeping the global Hamiltonian constant)
in order to fulfill Eq. (6.77).
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(ili) Born approximation — We assume that the coupling is so weak and
the reservoir so large that its state is essentially unaffected by the
interaction. Therefore,

X(1) = p(7) ® pr, (6.78)
so that Eq. (6.75) becomes

i(t) = th thTrR{[HSR(t), [ﬁSR(T),ﬁ(T)ﬁRH}. (6.79)

(iv) Markov approzimation — In Eq. (6.79), we replace p(7) with p(¢) and
obtain

i(t) = th dTTrR{[ﬁSR(t), [HSR(T),;;(@;;RH}. (6.80)

It is important to point out that this equation is no longer integro-
differential, but simply differential, since p(t) appears on the right-hand
side instead of p(7).

We now expand Hgpr over a basis of Hermitian operators {o;} acting
on the system:

M—-1

Hsr = Z oiB;, (6.81)
i=0

where the operators B; act on the environment. Notice that, if the Hilbert
space of the system has dimension N, we have M = N2 since the N x N
matrices constitute a linear vector space of dimension N2. For instance, if
N =2, we can take o9 = I, 01 = 04, 02 = 0y and 03 = 0,. We have

Hgg(t) = UN(t) HsrU(t) = Y &i(t) Bi(t), (6.82)

where
Gi(t) = UL(t)o; Us(t),  Bi(t) = UL(t) B; Ur(t). (6.83)

We now insert (6.82) and (6.83) into (6.80) and obtain

50 = 5 3 [ 4 {[50B.0. [50B, 0.5 0]} 650
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We expand the commutators on the right-hand side of this equation and
obtain

Taking advantage of the cyclic property of the trace, we have

) =~ 2 | ar T {0, ()50 B) By (7)im

= Gi()p(t)3;(r) B; () Bi(t)pr — 5 (1)5(1)5: () Bi(

+ p(0)5;(1)5 () By (D) B (Dpn | - (6.86)

N
s
Bl
—~
\]
S~—
=
=

After defining

Ty (t,7) = Trg { Bit) By(r)pn} (6.87)

) =~z 3 [ {505 0T (67) = 5, (0505 (s 1.7

— 05 (T)p)ai ()L (8, 7) + p(t)7i(7)a; ()T (¢, 7)} - (6.88)

We now assume that the bath correlation functions f‘ij are memoryless;

namely,
fij(t,T) = ’%j(S(t —T). (689)
This implies that
50) =~ 32 2 {5:05,000) - 53 (0)p(1)5:(0)

4,9

= 55(0A(MF() + ADF (0551 |- (6.90)
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Finally, we use Eq. (6.68) and define v;; = U#;;U" to derive the master
equation
. { 1 Vji
= —_[H il
p h [ SH p] + hz i] 2

{[az,paj] + [Uip,o'j]}. (6.91)

6.2.2 * The master equation and quantum operations

It is instructive to derive the master equation within the framework of the
quantum-operation formalism. In the Kraus representation, the density
matrices p(t) and p(t+dt), which describe the system at times ¢ and ¢+ dt,
are related as follows:

M—-1

p(t+dt) = S(t;t+dt)p E, p(t (6.92)
k=0

where S(t;t + dt) is the superoperator mapping p(t) into p(t + dt) and the
operators E, are the Kraus operators, whose number M is < N 2 (N is the
dimension of the Hilbert space). Note that the operators E, in (6.92), in
contrast with Sec. 5.4, refer to infinitesimal transformations. In order to
assure that S(t;t) is equal to the identity, we may write the Kraus operators
as follows:

Ey

1
I+ —(—iH + K) dt,

i ) (6.93)
E, = LyVdt, (k=1,...,M—1),

where H and K are Hermitian operators, and the operators Lj are known
as the Lindblad operators. The normalization condition ), E;LE;c = I gives

M—-1

I+%(iH+K)dt} {I h( —iH + K) dt] ; LiLydt = I, (6.94)
that is,
M—-1
ﬁKdIH- Z L}Lydt +0((dt)*) = 0. (6.95)
Therefore,

A M-—1
K= -3 ; LiLy. (6.96)
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We now insert (6.93) and (6.96) into (6.92) and obtain

7

p(t+dt) = p(t) — - [H, p(t)]dt
M-—1
+3 (Lkp(t)L; — 1Ll Lip(t) — ép(t)LLLk) dt +O((dt)?). (6.97)
k=1
If we assume that
p(t+dt) = p(t) + p(t)dt + O((dt)?), (6.98)

we obtain the GKSL (Gorini, Kossakowski, Sudarshan and Lindblad) mas-
ter equation (see Gorini et al., 1976 and Lindblad, 1976):

) M-1
p= -+ Y (LupLl - $LiLip—3pLiLi).  (6.99)

k=1
We should stress that the expansion (6.98) is possible under the Markovian
approximation previously discussed. We should also point out that the
quantum-operation formalism is more general than the master-equation
approach. Indeed, a quantum process described in terms of an operator-
sum representation is, in general, non-Markovian and therefore cannot be

described by means of a Markovian master equation.

Exercise 6.12 As an example application of the GKSL master equa-
tion, we consider a two-level atom in a thermal radiation field. In such a
situation, the master equation reads (see, e.g., Gardiner and Zoller, 2000)

p = —% [H,p]+~(n+1)(01po — 30 0p—5po_oy)

+yn(o_poy —s040-p—2poio_), (6.100)
where
H = 1 hwoo, (6.101)

so that wg is the frequency of the radiation that the atom will emit or
absorb, o4 = $(0, +ioy) and o_ = (0, —ioy) = 01 are the so-called
raising and lowering operators and 7 represents the mean occupation num-
ber at temperature T' (we have i = 1/[exp(fuwo/kpT) — 1], where kp is
the Boltzmann constant). Note that in (6.100) the Lindblad operators are
Li = \/y(i+1)oy and Ly = \/yino_. While Ly drives the transition
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[1) — |0), Lo induces the jump |0) — |1). Solve the master equation
(6.100). In particular, discuss the approach to equilibrium.

It is possible to show that the master equations (6.91) and (6.99) are equiva-
lent. First of all, for the expansion (6.81) we choose a basis {00, ...,0x2_1} such
that oo = I/V/N, Tr(o;) = 0, Tr(oloj) = 6ij (4,5 =1,...,N? —1). In this basis,
the master equation can be expressed in the form given by Gorini et al. (1976):

NZ_-1

p= =3 Ho+ 1 3 Ay {lowpoll+lownoll}, (6.102)

4,j=1

where H = H' and A is a positive complex matrix. The term —(i/h)[H, p] de-
scribes the Hamiltonian part in the evolution of the density matrix, while the
other terms in the right-hand side of (6.102) describe dissipation and decoher-
ence. Note that H is not necessarily the same as the system Hamiltonian since it
may include a non-dissipative contribution coming from the interaction with the
environment.

Let us introduce the matrix-valued vectors

o1 w1
o= , w = , (6.103)
ON2_1 WN2_1
where
w' = Sof (6.104)
and the matrix S is such that
A= 545" (6.105)

is diagonal. Let {\;} denote the eigenvalues of A. Since A is a positive matrix,
Ai > 0 for all &. We order these eigenvalues in such a manner that A\; > 0 for
i=1,...,M (M <N?>—1)and \; =0 fori = M +1,..., N> — 1. After defining
the vector

Ly \/A_lwi

: : , (6.106)

L2y \/mwj\ﬂ—l

Eq. (6.102) reduces to the GKSL master equation (6.99), L1, ..., La being the
Lindblad operators.

Exercise 6.13 Using Eqgs. (6.103-6.106), show the equivalence of the master
equations (6.102) and (6.99).
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6.2.3 The master equation for a single qubit

In this section, we study, in the Markovian approximation, the most general
evolution of the density matrix for a single qubit. The master equation
(6.102) is given by

§O =~ 01+ Y A (lmp0s) + oo}, (6107

4,7=1

where the {o;} are the Pauli matrices (01 = 0y, 02 = 0y, 03 = 03; o;-r =0;)
and A is a Hermitian matrix. We assume that both the Hamiltonian H
and the matrix A are time-independent. In other words, we assume that
the environment is stationary and not modified by the interaction with the
system. As shown in Sec. 6.2.1, the parameters A;; can be identified with
the bath correlation functions.

The Hamiltonian H describes the reversible part of the qubit dynamics.
It can be written as follows:

H = = (woos + Aoy + Aloy). (6.108)

N

Therefore, the Hamiltonian part of the evolution depends on the three real
parameters wg, A and A’. Since the dissipative part of the evolution is
governed by the 3 x 3 Hermitian matrix A, it depends on 9 real parameters.
Therefore, the evolution (6.107) of the single-qubit density matrix is deter-
mined by 12 independent real parameters. These parameters correspond
to the 12 parameters appearing in the Kraus representation of the most
general quantum-noise process acting on a single qubit.

It is useful to gain an intuitive understanding of the effect of these
parameters on the evolution of the single-qubit density matrix. For this
purpose, we employ the Bloch-sphere representation, in which

| @) w@)—w) | ) o
p(t) = 3 A TI+r@®) o], (6.109)

where 7(t) = (2(t), y(t), 2(t)). We can derive a first-order differential equa-
tion for the Bloch vector:

#(t) = Mr(t) +c. (6.110)

Indeed, if we insert (6.109) into (6.107), for the Hamiltonian part of the
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evolution we obtain

T 0 —wy 4 x
Y = w 0 =A|]lyl, (6.111)
2 . -A" A0 z
and, for the dissipative part,
z —2(Axo+A33)  (A12+A2) (A13+A31) x
= (A124+A21)  —2(As3+A11)  (Axz+Asz) Yy

(A13+A31) (Ags+Asz2) —2(A11+A2) z
2i(A23—A32)
+ | 20 (As1—Ags) |- (6.112)
2i(A12—A21)

D

After introducing the new parameters

v = 2(Ag2 + A33), 72 =2(Ass+ A1), 3 = 2(A11+ Ax),
a = (A2 + Aaxn), B = (Aiz + Aa1), v = (A3 + As2), (6.113)
c1 = 2i(Agz — Asz), co = 2i(As1 — Ai3), c3 = 20 (A2 — Aa),

we obtain
T -1 a—wy B+ A x c1
= |lat+w —v v-A y|l+ e, (6.114)
z B—A" v+ A —n3 z c3
which is of the form (6.110), with ¢ = (c1, ¢2, ¢3) and
M = My + Mp,
0 —wo 4 -1« 8
My = wg 0 —=A1, Mp = a —y . (6.115)
-A" A0 B v -

The matrix My, corresponding to the Hamiltonian part of the mas-
ter equation (6.107), generates unitary evolution. The matrix Mp, cor-
responding to the dissipative part of this equation, is symmetric and can
therefore be diagonalized. Its eigenvalues give the contraction rates of the
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Bloch sphere along the directions identified by the corresponding eigenvec-
tors. Hence, Mp deforms the Bloch sphere into an ellipsoid. The term ¢ in
(6.110) induces a rigid shift of the Bloch sphere. It is clear from (6.110) that
the evolution of the Bloch vector over an infinitesimal time dt is given by

r(t+dt) = (I + Mdt)r(t) + cdt + O((dt)?). (6.116)

This is an affine map. The evolution of the Bloch vector in a time ¢ can
be obtained by applying the infinitesimal evolution (6.116) % times, in the
limit dt — 0. Since the composition of two affine maps is again an affine
map, also the generic evolution of the Bloch vector in a finite time interval is
an affine map. This conclusion allows us to obtain a precise correspondence
between the 12 parameters appearing in the single-qubit master equation
and the 12 parameters needed to characterize a generic quantum operation
acting on a two-level system.
We now discuss a few special cases:

(i) Mp =0, ¢ =0 (Hamiltonian case).
Equation (6.114) reduces to

= —wy+ Az, §=wzr—Az, i=-ANz+Ay. (6.117)

The solution of these equations corresponds to a rotation of the Bloch
sphere about the axis

A A’ wo
n = 5 ) )
VR + A2+ A2\ + A2+ A2 2 + A2 + A2
(6.118)
with frequency Q = /A2 + A2 + w3.
Exercise 6.14 Solve Eq. (6.117).
(ii) Mp diagonal, Mg =0, ¢ = 0.

Equation (6.114) becomes

&= —-mz, Y= 7Y = —v32. (6.119)

These equations are readily solved, and we obtain
z(t) = 2(0)e ", yt) = y(0)e ", z(t) = 2(0)e” . (6.120)

Therefore, the Bloch sphere collapses exponentially fast onto its centre.
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(iii) Mp diagonal, My =0, ¢ # 0.
The differential equations that govern the evolution of the Bloch vector
are given by

T = —mr+c, Y = =7y +co, 2= —vy3z+c3.  (6.121)
The solution is

2(t) = z(0)e” " + “a (1—emh),

!
y(t) = y(0)e™ 72" + % (1—e), (6.122)
2(t) = 2(0)e "3 + & (1 — e*”m) .

V3

As in the previous case, the Bloch sphere shrinks exponentially fast
onto a single point. However, this point is no longer the centre of the
C1 Co Cc3

Bloch sphere but has coordinates (?’ =, 7—3).

6.3 Quantum to classical transition

6.3.1 Schrodinger’s cat

The problem of the emergence of classical behaviour in a world governed by
the laws of quantum mechanics has fascinated scientists since the dawn of
quantum theory. The heart of the problem is the superposition principle,
which entails consequences that appear unacceptable according to classical
intuition. This point is clearly elucidated by Schrodinger’s cat paradox.
Inside a box we have a radioactive source, a detector, a hammer, a vial of
poison and a cat. The source is a two-level atom, initially in its excited state
|1). The atom can decay to the ground state |0) by emission of a photon,
which triggers the detector. The click of the detector induces the hammer
to break the vial of poison and kill the cat. We assume that initially the
state of the composite atom—cat system is

o) = |1)[live). (6.123)

Since the poison kills the cat if the atom decays to the state |0), we obtain,
after a time corresponding to the half-life of the atom, the state

) = 2 (Ihive) + [0} dead)), (6.124)
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which is a superposition of the live- and dead-cat states. We emphasize
that the cat and the atom are now entangled. Let us consider the density
matrix of the state (6.124):

p =)l = %(|1>|1ive><1|<1ive|+|0>|dead><0|<dead|
+ |1)|live)(0|(dead| + |O)|dead)<1|<live|). (6.125)

In the basis {|0)|live), |0)|dead), |1)|live), |1)|dead)} we have

0000
0110

_ 1

P=310110 (6.126)
0000

This density matrix contains non-zero matrix elements not only along the
diagonal but also off-diagonal. These latter elements, known as coherences,
have no classical analogue.

Decoherence plays a key role in understanding the transition from the
quantum to classical world. The atom—cat system is never perfectly isolated
from the environment, so that, instead of the state (6.124), we must consider
the state

v) = & (|1)|live>|E1> + |o>|dead>|E0>), (6.127)

where |Ep) and |E;) are states of the environment. If |Ey) and |E;) are
orthogonal, then, after tracing over the environment, we obtain a diagonal
density matrix:

Paee = %(|1>|hve><1|<live| + |0)|dead)<0|<dead|). (6.128)

This diagonal density matrix corresponds to a mixed state and is compatible
with a classical description of the system in terms of probabilities. The cat
is dead with probability p = 1/2 and alive with the same probability, and
we discover its state upon observation. Note that this situation is different
from that described by (6.125). In that case, the atom—cat system is in a
non-classical superposition state and only collapses onto a “classical ”state
(corresponding to the live or dead cat) after a measurement.
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6.3.2 Decoherence and destruction of cat states

In this subsection, by means of a simple model, we shall show that a very
weak interaction with the environment can lead to very fast coherence de-
cay. These studies are of interest not only to understand the quantum
to classical correspondence but also from the viewpoint of quantum com-
putation. Since a quantum computer is never perfectly isolated from the
external world, it is important to estimate the degree of isolation required
to reliably implement a given quantum algorithm.

Let us first consider a free particle moving along a line. The wave
function t(x) describing such a system resides in the infinite-dimensional
Hilbert space £2(R).? A particle localized at zq is described by a Gaussian
wave packet:

P(x) = (z[vp) = M] : (6.129)

1
e I
VN p[ 262

It is easy to check (see exercise 6.15) that, for any state such, the mean
values of position and momentum are

(z) = =0, (p) =0, (6.130)

and the variances are

((Ax)?) = ((z —(2))?) ((Ap)*) = ((p—(0)?)
52 h?
=5 = o5 (6.131)

In the momentum-space representation the wave function ¢ (p) is given by

2L£2(R) is the space of the functions f(z) such that fj:s dz|f(z)]? < +oo. In
this space the inner product of two vectors fi1 and f2 is defined as (fi|f2) =
fj:oo dz f3(x) f2(x). Any wave vector |¢) has unit norm; namely,

“+o0 +oo
)| = /_oo de | ())? = /_oo da [p(@)|? = 1.

If the system is described by the wave function ¥ (z), the average value of any observable
O is given by

“+oo
() = / doy* (2)0Y(z).

—o0
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the Fourier transform of ¢(x) and again has a Gaussian shape:

60) = o) = = [ drep(~2 )y

1) 5%p? 1pTo
=\ 7 exp(— 572 ) exp<—7> . (6.132)

The density matrix corresponding to the Gaussian wave packet (6.129)
reads

(elola’) = (zfo) () = — exp(— Ct) 24:52(33'—3;0) ) (6.133)

7o

and is drawn in Fig. 6.15.

Fig. 6.15 The density matrix corresponding to a Gaussian wave packet centred at zo =
0. In this and in the other figures of this subsection we set § = 1.
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Exercise 6.15 Check that the Gaussian wave packet

1 (x — Ty — p—ot)2
U(a,t) = exp{——.“f’
VA (14 i) 6 20% (1+i55)

h 2m

I [po(x — a0) — b} t] } (6.134)

is solution of the Schrodinger equation for a free particle moving in one

dimension:
h L get) = B t) = oLy, (6139)
! 8th’ N DY T Tomaz Y\ '
Show that
(€) = w0+ 20t {p) = po (6.136)

namely, that the wave packet moves with constant velocity po/m. Finally,
check that

9 52 h*t? 9 h?
((Ax)?) = DY [1"' W} ) ((Ap)*) = 552 (6.137)
This implies that
h h2t2
AxAp = 5 1+ s (6.138)

where we have defined Az = /((Ax)?) and Ap = /{(Ap)?). Therefore,
(6.134) is a minimum uncertainty wave packet (AzAp = h/2) only at time
t=0.

We now consider the superposition of two Gaussian wave packets centred
at +x¢ and —xq, respectively. We assume that the distance 2z between
these two packets is much larger than their width §. These states are known
as cat states, for a reason that will soon become clear. If ¢4 (z) and ¥_(z)
denote the two Gaussian packets, we have

wcat (J)) = \/_12 [¢+ (J?) + w— (Z‘)]
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An example probability distribution for a cat state is shown in Fig. 6.16.
The corresponding density matrix, drawn in Fig. 6.17, has four components:

<x|pcat|x'> = <x|w>cat cat<w|x,> = wcat(x)w:at(x/) = 1Z)cat(‘Cu)wcat(x,)

= L4 (@) (@) + v (2)0— (') + Vi (@)— () + ¥ (x)by ()]
6.140)

The peaks along the diagonal (z = z') correspond to the two possible
locations of the particle, x = x¢ or x+ = —x9. The off-diagonal peaks
(x = —a') are purely quantum and demonstrate that the particle is neither
localized in xg nor in —zg. We have a coherent superposition of the states
¥4 (z) and _(x); as in Schrodinger’s cat paradox, we have a superposition
of the states |1)|live) and |0)|dead).

0.3

hy(x)|

01 | .

Fig. 6.16 The probability distribution for the cat state (6.139), with zo = 104.

In order to investigate the physical origin of decoherence, it is useful to
compare the Fourier transforms of a Gaussian and of a cat state. For the
Gaussian wave packet (6.129) we have

|(plv)|” = % eXp(—éh—é)), (6.141)
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Fig. 6.17 The density matrix corresponding to the cat state (6.139), with z¢ = 100.

while for a cat state we obtain

5%p? px
| p|¢ cat} \/_h <—F) COS2 (%) . (6142)
Both (6.141) and (6.142) are shown in Fig. 6.18.

12 1.2
09 - 109 .
N oV}
1206} .
103} .
o | | | "
3 3 2 1 0 1 2 3

Fig. 6.18 The probability distributions |1(p)|? of a Gaussian state (left) and a cat state
(right), with o = 104. In this figure we set § = h = 1.
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We emphasize the presence of interference fringes in the case of the cat
state. These fringes are of pure quantum origin and are due to the coherent
superposition of |14) and |1_) in [tcas). It is clear from (6.142) that these
fringes have a period given by

p=—. (6.143)

The important point is that this period drops with increasing the sepa-
ration 2xy between the two Gaussian packets. The interaction with the
environment quickly weakens the visibility of the interference fringes. It
is intuitive that this process is faster when the frequency of the fringes is
higher; that is, when the separation of the packets is larger. Therefore,
“non-local” quantum superpositions are very fragile. Table 6.1 gives the
order of magnitude of p for a few relevant cases. Since a photon with
wavelength 600 nm has a momentum of approximately 10727 Kgm/s, it is
sufficient the collision of a such a photon to destroy quantum coherences in
the cases shown in Table 6.1.

Table 6.1 Relevant orders of magnitude for different cat

states.
system mass o p(Kgm/s)
atom 30 a.m.u. 600 nm 10—27
dust particle 107 9%g 10~2cm 7 x 10730
cat 1Kg 10cm 7 x 10733

It is instructive to present a simple microscopic model illustrating the destruc-
tion of cat states (here we follow Cohen-Tannoudji, unpublished lecture notes).
To simplify the discussion, we assume that the particle subjected to the decoher-
ence process is heavy enough to neglect the variation of its kinetic energy over
the decoherence time scale. We model a system—environment interaction event
as the scattering of a heavy particle (the system) with a light particle. We write
the composite initial state of these two particles as follows:

(X, 2) = U(X) ® by, (@), (6.144)

where X and x denote the positions of the heavy and the light particles, moving in
three-dimensional space, and p, is the initial momentum of the light particle. Let
us describe the scattering of these two particles. For this purpose, it is convenient
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to write the Fourier expansion of the wave function ¢(X):

P(X) = m/dpexp(iph'){) U(P). (6.145)

We insert (6.145) into (6.144) and obtain

Bi(X,z) = m/dPexp<iPﬁX) B(P) ® bp, (). (6.146)

The scattering of the two particles changes momenta: P; = P — Py and
p; — Py. Momentum is conserved, so that

Pi+p; = P;+p;. (6.147)

Therefore, the effect of scattering on the wave function (6.146) is described by
the following transformation:

exp(iPﬁX) ® ¢p, () — exp(i(P+pih_ pf)'X) ® ¢p,(x).  (6.148)

In order to obtain the final state of the composite system ®;(X,x), we must
integrate over all possible states after scattering. We have

(X, ) = m/dP/dpfA(pf,pi)exr)(iPﬁX)1@(1’)
X exp(—i u 7;?) : X‘) ® ¢p,; ()

¢(X)/dpfA(pf,pi)exp(W) ® ¢p, (), (6.149)

where we have assumed that the transition amplitude A(p;,p;) is independent
of the state of the heavy particle. It is important to stress that the collision has
transformed the separable state (6.144) into an entangled state. In other words,
the system is now entangled with the environment. The key point is that, while
the global (system plus environment) final state ® (X, x) is a pure state, this is
not the case for the state of the system alone. Therefore, it must be described by
means of a density matrix, obtained after tracing over the environmental degrees
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of freedom:
Xlpslx") = [ dw s (X 2)85(X",2)

- /dwd}(X,)w*(X”)/dp} A(P}vpi)exp<L

02y
* i(piip”)lX” *
 fa s moen LTI

’ " i(pifp)'(X/fX”)
x| dpf\A(pf,p»Fexp( :

where we have used the orthogonality relation

/dm S, ()b (x) = 3(P) — P) (6.151)
and factored out the initial density matrix of the system:
(X' |pal X7y = (X" (X"). (6.152)

We must evaluate the integral appearing in the last line of (6.150). First of
all, we assume that the collision is elastic, so that energy is conserved; that is,

Pf + p? - P_fg+ﬁ7
2M  2m 2M  2m

(6.153)

where M and m are the masses of the heavy and the light particle, respectively. It
is reasonable to assume that the kinetic energy of the heavy particle is essentially
unchanged (% ~ QEJ\%) Thus, ijl = 3L and so |p;| ~ |p,|. This implies that
the integral in the last line of (6.150) averages to zero when | X' — X" | > 1i/|p;|,
as in this case its argument oscillates rapidly. Therefore, the matrix elements of
ps for | X’ — X"| > h/|p;| are eliminated after a single scattering event. This
means that we may limit ourselves to the case | X' — X"| < h/|p;|. In this limit

we may expand the exponent appearing in (6.150) as follows:

exp(i(pﬁpf)‘h(X -X )) ~ 1+i(pﬁpf)~h(X - X")
L[ —py) - (X = X"
—5[ ! : . (6.154)

We now insert this expression into (6.150). The first term gives

(X i X" / dp; A, p)l? = (X'|pi| X"). (6.155)
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We can transfer (X'|p;|X"’) to the left-hand side of (6.150) to define the variation
of the density matrix due to the collision as follows:

S(X'|pIX") = (X'|ps|X") — (X'|pi] X"). (6.156)

Assuming invariance of A with respect to reflections, namely A(p;,p;) =
A(—=p;, —p;), we see that the linear term in (6.154) does not contribute to the
integral in (6.150). Finally, we insert the second-order term of (6.154) into (6.150)
and obtain

(P —py) ’
M(X'pIX") = —3 / dp; |A(ps,py)| | (X = X" (X il X7

o | X = X)X |pi] X, (6.157)

Therefore, given a cat state, the interaction with the environment drops coher-
ences and leaves the diagonal terms of the density matrix practically unchanged,
corresponding to “classical” probability distributions.

6.4 * Decoherence and quantum measurements

The role of measurement is to convert quantum states into classical out-
comes. In this section, we shall discuss the role of decoherence in the
quantum measurement process. This issue is important in the problem of
the transition from quantum physics to the classical world. Moreover, it is
of interest in quantum information processing since any quantum protocol
must end with a measurement.

We seek a purely unitary model of measurement that does not require
the collapse of the wave packet. In this model, the first stage, known as
premeasurement, is to establish correlations between the system and the
measurement apparatus. In order to clarify this point, we consider a simple
example, sketched in Fig. 6.19. A one-qubit system, prepared in a generic
pure state |¢) g = |0)¢ + 5|1) ¢, interacts with a measurement apparatus,
initially in the state |0) ,. We assume that this interaction induces a CNOT
gate. Therefore, the premeasurement process maps the initial state

[@o) = [¥)510)4 = (a]0)s + BI1)5)0) 4 (6.158)
into the state

|P) = a|00)g, + B[11)g 4, (6.159)
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corresponding to the density matrix

a2 0 0 aB*
0 0 0 O
a*B 0 0 |8

We stress that this final state is entangled. This means that purely quantum
correlations between the system and the measurement apparatus have been
established. As a consequence, in the density matrix there are non-zero off-
diagonal terms.

00) +B|1>

0) |

Fig. 6.19 A single-qubit premeasurement. The top line represents the system, the
bottom line the measurement apparatus.

The presence of entanglement in the state (6.159) engenders ambiguity
in the measurement process. The problem arises if we wish to associate
the possible states of the apparatus with those appearing in (6.159), |0) 4
and |1) 4. At first glance, it would be tempting to say that the measured
quantity is o, and that the possible outcomes are +1, corresponding to
the states |0) , and |1),. However, this interpretation is not correct. To
illustrate this point, let us take a = 8 = ﬁ in (6.159). In this case we
may write

2) = —5(100) +[11)) = (I ++) +] =), (6.161)

where |£) = %(|O) +|1)) are the eigenstates of o,. Therefore, the above
interpretation would lead to an ambiguity in the definition of the measured
quantity. Moreover, the direction of the information flow is not uniquely

determined either. The action of the CNOT gate is
CNOT (lz)g |y) 4) = |2)gly ® ) 4, (6.162)

where x,y = 0,1. Since the first qubit is unchanged, the direction of the
information transfer is from the first qubit to the second qubit. Thus, it
appears reasonable to identify the first (control) qubit with the system and
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the second (target) qubit with the measurement apparatus. However, this
identification is not always correct since we have

CNOT (|£)g[+)4) = [E)g[+) s
CNOT (|£)g[=)a) = [F)s =) a-

Thus, for the states of the {|+),|—)} basis the second qubit is unchanged
while the first qubit is flipped when the state of the second is |—) (this
is the backward sign propagation discussed in Sec. 3.4). This means that,
while the information on the observable o, flows from the first to the second
qubit, the information on o, travels from the second to the first qubit. If
we require the information to alway goes from the system to the apparatus,
then we must identify the first qubit with the system and the second qubit
with the measurement apparatus in (6.162) and vice versa in (6.163).

The above ambiguities are resolved if we take into account the inter-
action of the measurement apparatus with the environment. For instance,

(6.163)

we can represent the environment as a third qubit, interacting with the ap-
paratus by means of a CNOT gate (see Fig. 6.20). The system-apparatus
density matrix is obtained after tracing over the environmental degrees of
freedom. In this example we obtain

@20 0 0
0O 0 0 O
p— .1 4
PsA 00 0 0 (6.164)
0 0 0|B7

00> +B| D

10>

10) |

Fig. 6.20 A single-qubit premeasurement followed by a system—environment interaction
process. The lines represent the system (top), the measurement apparatus (middle) and
the environment (bottom).

In this density matrix, quantum correlations have disappeared, and we
may interpret the density matrix (6.164) as follows. There exist classical
correlations between the states |0) ¢ and |0) 4 as well as between the states
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|1)g and |1) ,: if the apparatus is in the state |0) ,, we know that the system
is in the state |0) ¢; on the contrary, if the apparatus is in the state |1) 4, the
system is in the state [1) ;. We emphasize that the density matrix (6.164) is
diagonal in a preferential basis whose states (known as pointer states) are
determined by the form of the apparatus—environment interaction. It is the
CNOT interaction of the apparatus with the environment that determines
the preferential basis in which the density matrix (6.164) is diagonal. A
different apparatus—environment interaction would determine a different
preferential basis. Therefore, according to the pointer-state theory, it is
the interaction with the environment that determines which observable is
measured by the apparatus (see Zurek, 2003).

6.5 * Quantum chaos

The discovery of classical dynamical chaos is now recognized as a major
scientific achievement of the past century. More than three hundred years
after the establishment of Newton’s laws, we finally attained a reasonable
understanding of the qualitative features of the solutions of the equations
of motion for non-linear systems. Indeed, apart from the pioneering con-
tribution of scientists such as Henri Poincaré and a few others, it was only
after the work of Kolmogorov and Fermi—Pasta—Ulam in the fifties that the
scientific community gradually recognized the important role of what are
now known as non-linear dynamical systems or complex systems. It has to
be noted that in the growth of this field a major role is being played by com-
puters, which allow numerical simulations (sometimes known as “numerical
experiments” ).

The analogous problem in quantum mechanics, sometimes known as
“quantum chaos”, has a more recent history. The need to understand the
behaviour of complex quantum systems requires going beyond traditional
perturbation theory and the solution of integrable models. In this connec-
tion it is quite remarkable that a crucial observation made by Einstein in
1917 had passed unnoticed for more than half a century. Einstein noted
that the quantization rules introduced by Niels Bohr in 1913 were only
applicable to systems for which there existed invariant tori in classical me-
chanics. However, invariant tori do not exist for most systems and therefore
Bohr’s quantization rules cannot be applied. Indeed, quantum mechanics
has been developed on the basis of integrable systems such as the harmonic
oscillator and the hydrogen atom. On the other hand such systems are
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the exception rather than the rule and the typical behaviour of classical
dynamical systems is instead chaotic. Therefore, the understanding of the
quantum behaviour of systems that are chaotic in the classical limit is very
important and is the subject of the present section. The problem of the
quantum to classical transition is naturally posed within this context. A
related question is: how accurate can the description of natural phenomena
based on classical mechanics be?

6.5.1 * Dynamical chaos in classical mechanics

As once stated by Sommerfeld, for a better understanding of a quantum
problem it is advisable to study its classical counterpart. This is particu-
larly true for quantum chaos. Therefore, in this section we briefly discuss
dynamical chaos in classical mechanics. Dynamical chaos destroys the de-
terministic image of classical physics and shows that, typically, the trajec-
tories of the deterministic equations of motion are, in some sense, random
and unpredictable. Such classical behaviour is rooted in the exponential
local instability of motion. For Hamiltonian (non-dissipative) systems the
local instability is described by the linearized equations of motion

AN
~ \9q0p)/, op? )"

. 0’H 0*H

1=~ (57 ) ¢ (o).
where H = H(q, p, t) is the Hamiltonian, (¢,p) = (q1,...,¢¢,p1,...,pyf) are
the coordinates of the 2f-dimensional phase space and £ = dq, n = dp are
f-dimensional vectors in the tangent space (f is the number of degrees of
freedom). The coefficients (- - - ), of the linear equations (6.165) are taken
along the reference trajectory and therefore depend on time.

An important quantity, characterizing the stability of the motion along

the reference trajectory, is the so-called (mazimum) Lyapunov exponent A,
which is defined as the limit

(6.165)

= lim i n @
A= ! (d<o>>’ (6.166)

with d?(t) = €2(t)+n%(t) the length of the tangent vector at time ¢. Positiv-
ity of the Lyapunov exponent (A > 0) implies exponential instability of the
motion: two nearby trajectories separate exponentially, with a rate given
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by A. Note that, in Hamiltonian systems the instability does not depend on
the direction of time and is therefore reversible, as is the chaotic motion.

The reason why the exponentially unstable motion is said to be chaotic
is that almost all orbits, though deterministic, are unpredictable (see also
Sec. 1.4), in the framework of fixed finite precision for specifying initial data
and performing calculations. Indeed, according to the Alekseev—Brudno
theorem (see Alekseev and Jacobson, 1981), in the algorithmic theory of
dynamical systems the information I(t) associated with a segment of tra-
jectory of length t is equal, asymptotically, to

()

t—oo [t]

= h, (6.167)

where h is the Kolmogorov—Sinai entropy (see Sec. 5.14.3), which is posi-
tive when A > 0.2 This means that in order to predict a new segment of a
chaotic trajectory one needs an amount of additional information propor-
tional to the length of the segment and independent of the previous length
of the trajectory. In such a situation information cannot be extracted from
the observation of the past history of the motion. If, on the other hand,
the instability is not exponential but follows a power-law, the information
required per unit time is inversely proportional to the previous length of
the trajectory and, asymptotically, prediction becomes possible. Of course,
for a sufficiently short time interval prediction is possible even for a chaotic
system and can be characterized by the randomness parameter
hit]

P Tl (6.168)

Here p is the accuracy of trajectory recording, so that |Inp| gives the
amount of information (number of digits) necessary to specify the state of
the system at a given time. The prediction is possible in the finite interval of
“temporary determinism” (r < 1), while r > 1 corresponds to the infinite
region of asymptotic randomness. Note that in chaotic systems prediction
is possible up to a time that scales only logarithmically with the accuracy
p: we have 7 < 1 when [t < #|In pl.

Exponential instability implies a continuous spectrum of motion.* The
continuous spectrum, in turn, implies correlation decay. This property,
which is known as mizing in ergodic theory, may be seen as the basis of

3 As stated in Eq. (5.262), for conservative systems the Kolmogorov—Sinai entropy is
given by the sum of all positive Lyapunov exponents.

4The spectrum of motion is also known as the power spectrum. If z(t) is a dynamical
variable, such as position ¢(t) or momentum p(t), the power spectrum S(w) is defined
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a statistical description of dynamical systems. The point is that mixing
provides the statistical independence of different parts of a dynamical tra-
jectory, sufficiently separated in time. This is the main condition for the
application of probability theory, which allows the calculation of statistical
characteristics such as diffusion or relaxation to equilibrium.’

Dynamical chaos represents a limiting case of classical motion. The op-
posite limiting case is given by completely integrable f-freedom systems.
By definition, an integrable Hamiltonian system is defined as one hav-
ing as many single-valued, analytic constants of motion ®;(¢,p,t) = C;
as degrees of freedom in involution (that is, all pairwise Poisson brack-
ets [®;,®;] = 0). For such systems there exists a single-valued, analytic,
canonical transformation bringing the Hamiltonian H(q, p,t) into the form
H(I)=H(I,...,1Iy), that is, a function of the new momenta (known as ac-
tions) alone. The equations of motion are then trivial to integrate and lead
to trajectories winding around an f-torus with f discrete frequencies. The
resulting motion is, in general, quasi-periodic and a cloud of points draws
out a bundle of trajectories such that close-by points only separate linearly.

as the Fourier transform of the autocorrelation function C(7) of z(t):

N e
C(r) = lim ?/0 dtz(t)z(t + 1),

T 2

1 )
lim — dtz(t)e "t

1 too —iwT 1
Sw) = dr C(1)e = AT

21 J oo 27

For an integrable system the solution z(t) can be written as a multiply periodic function:

:E(t) _ Z iUml,...,mfei(mller”'erfwf)tv
Mmy,...,m§
where the m; are integers. Notice that, since z(¢) is real, we have Tomy,..,—myp =
5, e Inserting the above expression into the previous, we obtain
Sw) = Z \xml,,_,,mf|26(wfm1w1f...fmfwf),
mi,...,mg
that is, a set of sharp lines at the fundamental frequencies wi,...,wy and their linear
combinations with integer coefficients my,...,my. For a chaotic system the function

S(w) is instead continuous.

50n the other hand, we point out that exponential instability is not necessary for a
meaningful statistical description: examples of systems with linear instability have been
found, which exhibit normal diffusion (see Li et al., 2004).

6Clearly, the motion is not ergodic on the (2f — 1)-dimensional energy surface. Yet
it may be ergodic on the f-torus, provided the f frequencies are incommensurate. We
recall that ergodicity means that almost all trajectories cover the energy surface homo-
geneously; that is, the sojourn time of a trajectory in any region of the energy surface is
proportional to the invariant measure of that region. This property implies that temporal



382 Principles of Quantum Computation and Information. II

The property of complete integrability is very delicate and atypical as it
is, in general, destroyed by an arbitrarily weak perturbation that converts
a completely integrable system into a KAM-integrable system (after Kol-
mogorov, Arnold and Moser).” We stress that, unlike integrable motion,
chaotic motion is typically very robust: it is structurally stable; that is,
small perturbations do not qualitatively alter the system behaviour.®

Instead of using trajectories (in what might be called the “Newton pic-
ture”) classical dynamics can be described in terms of distribution functions
in phase space (the “Liouville picture”). Distribution functions obey the
linear Liouville equation. Therefore, the condition of non-linearity for dy-
namical chaos to occur refers to the description in terms of trajectories.
In terms of distribution functions the property of mixing implies the ap-
proach, on average (that is, after coarse graining, as explained below), of
any initially smooth distribution to a steady state. This process is known
as statistical relaxation. The time-reversibility of the distribution function
is related to its very complicated structure, which becomes more and more
“scarred” as the relaxation proceeds. In the case of exponential instability
of motion the spatial scale of the oscillations of the distribution function
decreases exponentially with time. It is in these fine spatial oscillations
that the memory of the initial state is retained. To remove these compli-
cated structures, the distribution function must be coarse-grained; that is,
averaged over some domain. The evolution of the coarse-grained function
is described by a kinetic equation, e.g., a diffusion equation. The coarse-
grained function converges to a smooth steady state.

In closing this subsection, we wish to stress the two crucial properties of
classical mechanics necessary for dynamical chaos to occur: (i) a continuous
spectrum of motion and (ii) a continuous phase space.

6.5.2 * Quantum chaos and the correspondence principle

As we saw in the previous subsection, a well developed ergodic theory exists
for classical systems with a finite number f of degrees of freedom (see also

and ensemble averages converge to the same mean but it is not sufficient for a statistical
description of motion since relaxation of a given distribution to some statistical steady
state is not guaranteed. To this end the mixing property is necessary.

"The structure of KAM motion is very intricate: the motion is confined to invariant
tori for most initial conditions yet a single, connected, chaotic motion component (for
f > 2) of exponentially small measure (with respect to the perturbation) arises, which
is nevertheless everywhere dense (see Arnold, 1997).

8Strictly speaking, this property is only valid for the so-called Anosov flows, see
Lichtenberg and Lieberman (1992).
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Fig. 6.21). This theory allows a fairly good understanding of the statistical
properties of such systems.

A corresponding theory is completely lacking for the following important
classes of systems:

(i) Classical systems with an infinite number of degrees of freedom, such
as matter interacting with an electromagnetic field (e.g., the problem
of black-body radiation). The main difficulty here is that the two
limits |¢| — oo and f — oo do not commute.

(ii) Quantum systems with a finite number f of degrees of freedom. The
difficulty here is that the two limits |[t| — oo and feg — 0 do not com-
mute (see Fig. 6.21), where fieg = /i/I is the effective Planck constant
of the system, I being a characteristic value of the action variable.
The classical limit is obtained when h.g — 0.

(iii) Quantum systems with infinite degrees of freedom.

In the following we shall only consider systems of class (ii); namely, we
shall present a short introduction to so-called “quantum chaos”

The problem of quantum chaos grew out of attempts to understand the
very peculiar phenomenon of classical dynamical chaos in terms of quantum
mechanics. The distinction between regular and chaotic motion survives
quantization, even though the distinction criteria change. In particular, the
alternative of exponential or power-law divergence of trajectories disappears
in quantum mechanics, Heisenberg’s uncertainty principle forbidding the
notion of trajectories. Conversely, as we shall discuss below, the quantum
mechanics of systems that are chaotic in the classical limit is characterized
by genuine quantum phenomena, such as quantum dynamical localization
and level repulsion, as in random-matrix theory.

The essential conditions for classical chaos, discussed in the previous
subsection, are violated in quantum mechanics. Indeed, the energy and
the frequency spectrum of any quantum motion, bounded in phase space,
are always discrete. As a result, the motion is always almost periodic and,
according to the existing theory of dynamical systems, corresponds to the
limiting case of reqular motion. The ultimate origin of this fundamental
quantum property is the discreteness of phase space itself or, in modern
mathematical language, a non-commutative geometry of the latter: The
uncertainty principle implies a finite size of an elementary phase-space cell:
AqAp > h. On the other hand the correspondence principle requires the
transition from quantum to classical mechanics for all phenomena, including
dynamical chaos. How can the correspondence principle be reconciled with
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GENERAL THEORY OF DYNAMICAL SYSTEMS

Finite number f of freedoms
H(B,1,1) = Hy(I) + V(6. 1,¢)

Asymptotic ergodic theory || — o
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Fig. 6.21 Classical ergodic theory and the place of quantum chaos: I, are action-angle
variables, A the Lyapunov exponent, h.g the dimensionless Planck constant. Notice
that ergodicity is compatible with both discrete or continuous spectrum. Quantum
pseudochaos takes place for finite f, ¢t and Ffeg.

a discrete quantum energy spectrum when the limit is to be chaotic and thus
characterized by a frequency continuum? The answer to this question must
lie in the existence of fieg-dependent time scales (heg being the effective
Planck constant) and, equivalently, energy scales. For quantum features to
become manifest one must resolve discrete energy levels (whose spacings
vanish as fegr — 0); that is, sustain observation times that diverge in the
limit Aeg — 0. Quantum chaos possesses all the properties of classical
dynamical chaos but only on finite time scales that grow indefinitely in the
classical limit. In other words, the quantum to classical correspondence
for chaotic phenomena can be understood from the observation that the
distinction between continuous and discrete spectra only becomes sharp in

the limit [¢| — oc.”

91t is interesting to note that the same mechanism of transient chaos works in the
case of any (e.g., classical) linear wave or even in the case of completely integrable
dynamical systems. In this sense, quantum chaos can be viewed as a particular case of
a phenomenon known as pseudochaos (or finite-time dynamical chaos) and is different
from the “true” dynamical chaos defined in existing ergodic theory. It is important to
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Note that the entire problem of quantum mechanics is in general divided into
two qualitatively different aspects:

(i) proper quantum dynamics, as described by a specific dynamical variable, the
wave function |¢(¢));

(ii) quantum measurement, including the recording of the result and hence the
collapse of the wave function.

The first aspect is described by a deterministic equation such as the Schrédinger
equation and naturally belongs to the general theory of dynamical systems. In
the following, only the first aspect will be discussed. At any rate, we wish to
point out that the absence of classical-like chaos in quantum dynamics is true for
the first aspect only. As far as the result is concerned, quantum measurement is

fundamentally a random process.

6.5.3 * Time scales of quantum chaos

In order to understand the main features of quantum chaos it is convenient
to consider simple models that nevertheless exhibit the rich variety and
complexity typical of general non-linear systems. Particularly useful are
area-preserving maps, as these maps may be very conveniently handled
in computer simulations. To illustrate the time scales of quantum chaos,
we shall consider the so-called kicked rotator, also known as the Chirikov
standard map. The relevant Hamiltonian reads

“+oo
H(I,0,7) = 4I* + kcos®»  8(r —mT), (6.169)

m=—0o0o

where (I,0) are conjugate momentum—angle variables. The expression
“kicked rotator” refers to a particular physical interpretation of this model
as a rotator with angular momentum I, driven by a series of periodic pulses
(the kicks). The corresponding equations of motion reduce to the standard
map

I = 1+ksin,
(6.170)

0 =6+TI,
which gives the new variables (I, ) after one period T of the perturbation.

The standard-map model may be studied on either the infinite cylinder
(unbounded motion, —oo < I < 400) or a finite torus (bounded motion)

point out that, in contrast to classical linear waves, the linearity of quantum evolution
is not an approximation but a fundamental physical property.
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of length 27 L (along the rescaled variable J = T'I), with L integer to avoid
discontinuities being introduced into (6.170).

The quantized standard map is obtained by means of the usual quan-
tization rules: § — 6 and I — I = —i0/96 (we set i = 1). The quantum
evolution in one map iteration is described by a unitary operator U, known
as the Floquet operator, acting on the wave function :

b =Ut = e~ iTI?/2 ,~ikcos 0. (6.171)

Since [0, J] = [0, T1I] = T, the effective Planck constant is given by fieg =
h/k and the classical limit corresponds to k — oo and T' — 0 while keeping
K = KT constant.

The kicked-rotator model on the torus can also be considered as the
Poincaré surface-of-section map for a conservative system with two degrees
of freedom. What makes the standard map almost universal is the local
(in momentum) approximation it provides for a broad class of more com-
plicated physical models. For example, as we shall discuss in Sec. 6.5.5, the
excitation and ionization of a hydrogen atom under a microwave field can
be approximated, in the quasiclassical regime, by map (6.170). Finally, the
quantum kicked-rotator model is studied experimentally with cold atoms
in a pulsed optical lattice, created by laser fields (the first experiment was
performed by Moore et al., 1995).

Note that the kicked rotator belongs to the class of periodically driven
dynamical systems described in Sec. 3.15.3 and therefore its classical dy-
namics depends only on the parameter K = kT. For K > 1 the classical
motion may be considered ergodic, mixing and exponentially unstable with
Lyapunov exponent A ~ In(K/2), negligibly small stability islands apart.
In particular, the rescaled momentum variable J = T'I displays a random
walk type of motion and, for K larger than the chaos border K, ~ 1,
exhibits normal diffusion:

((AT)?*) = {((J = (]))*) = D(K)t, (6.172)

where t = 7/T measures the time in units of map iterations and the diffusion
coefficient D(K) = C’(K)KT2 Here the function C(K) accounts for dynam-
ical correlations. In particular, C(K) — 0 when K — K, and C(K) — 1
for K > 1 (random phase approximation). As discussed in Sec. 3.15.3, the
evolution of a distribution function f(J,¢) at K > K, is governed by the
Fokker—Planck equation. Therefore, starting from a distribution initially
peaked at J = Jy (i.e., f(J,0) = 6(J — Jo)), we obtain a Gaussian distribu-
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tion at time ¢, whose width is given by /D(K)t (see Eq. (3.204)). These

conclusions are valid for the standard map taken on the infinite cylinder.

When the motion is bounded on a torus with 0 < J < 2« L, the diffusion

leads to the statistical relaxation of any non-singular distribution function
1

to the uniform steady state fi(J) = 5z7. The relaxation time scale is

estimated by the diffusion time

L2

D(K)

tg ~ (6.173)

In order to understand the existence of different time scales in the quan-
tum motion, we compare the classical and quantum evolution starting from
the same initial conditions. According to the Ehrenfest theorem, a quantum
wave packet follows a beam of classical orbits as long as the packet remains
narrow. During this time interval the quantum wave-packet motion is ex-
ponentially unstable and random as is the underlying classical trajectory.
However, the initial size of the quantum wave packet is bounded from below
by the elementary quantum phase-space cell of order fi. Let us start from
an initial minimum-uncertainty wave packet of size AGgAJy = TAO ALy ~
Th = heg, with Ay ~ AJy ~ /heg (this choice corresponds to the optimal,
least-spreading wave packet). Then Af grows exponentially due to classical
exponential instability: Af(t) ~ Abpexp(At) ~ Vher exp(\t), with A the
maximum Lyapunov exponent of the system. Therefore, complete spread-
ing over the angle variable 6 is obtained after the so-called Ehrenfest (or
random) time scale

1
tg ~ X\lnheff\. (6.174)

True dynamical chaos, characterized by exponential instability, is limited in
quantum mechanics (for Hamiltonian systems) to the logarithmically short
(in fer) Ehrenfest time scale (see Berman and Zaslavsky, 1978). Note that
tg increases indefinitely as hog — 0, in agreement with the correspondence
principle.

The second time scale t* (known as the Heisenberg or the relazation
time scale), at which the quantum evolution breaks away from the classical
diffusion, is related to the phenomenon of quantum dynamical localization.
For ¢t > t*, while the classical distribution goes on diffusing, the quan-
tum distribution reaches a steady state that decays exponentially over the
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momentum eigenbasis (see Figs. 6.22 and 6.23):

2 1 2lm —m
W = [(mle)|” = ZeXp(—%), (6.175)
where the index m denotes the eigenstates of I (I|m) = m|m)), mg is the
initial value of the momentum and the localization length £ gives the width
of the localized distribution.
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Fig. 6.22 Quantum localization (solid curve) of classical diffusion (dashed curve) for the
kicked-rotator model. Classical and quantum evolution are obtained for parameter values
K =5, L =300, N = 213 = 8192 levels (hog = 0.23). Classical evolution is computed
by iterating the classical Chirikov standard map starting at time ¢ = 0 with an ensemble
of 10% orbits chosen in the interval (0, 1) € [2—0.5,2+0.5] x [—2,2]. Quantum evolution
is obtained by iterating the quantum kicked-rotator map starting from the initial least-
spreading Gaussian wave packet of size A0 = (AI)™! ~ /Aieg ~ 0.5, centred on the
initial classical density of points.

An estimate of t* and ¢ can be obtained by means of the following ar-
gument (see Chirikov et al., 1981). During the initial stage the quantum
motion mimics classical diffusion, so that the number of unperturbed levels
significantly involved in the dynamics increases with time as Am ~ /Dy,
where D,,, = D(K)/h2; ~ k*/2 ~ 1/h2 is the classical diffusion coefficient,
measured in number of levels. Since the number of levels involved grows
diffusively o< v/t and, due to the Heisenberg principle, the discreteness of
levels is resolved down to an energy spacing o< 1/t, then the discreteness of
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Fig. 6.23 Classical (dashed curve) versus quantum (solid curve) probability distribu-
tions over the momentum basis for the kicked-rotator model, at time ¢ = 5000 > t* ~

2
Dy ~ % (hKff) ~ 2.4 x 10%2. The dashed curve gives the Gaussian classical distribu-

tion, while the solid curve is exponentially localized. The straight line shows the decay
predicted by (6.175), with £ = Dy,. Parameter values and initial conditions are the same
as in Fig. 6.22.

spectrum eventually dominates. This is the fundamental reason for which
localization takes place. The localization length £ can then be estimated as
follows. The localized wave packet has significant projection over approxi-
mately £ basis states, both in the basis of the momentum eigenstates and in
the basis of the eigenstates of the Floquet operator U, which gives the evolu-
tion of the wave packet from time ¢ to t+1 (|¢o(t+1)) = Ulap(t))). This oper-
ator is unitary and therefore its eigenvalues can be written as exp(i);), and
the so-called quasi-energies \; are in the interval [0, 2. Thus, the mean
level spacing between “significant” quasi-energy eigenstates is AE =~ 27 //.
The Heisenberg principle tells us that the minimum time required for the
dynamics to resolve this energy spacing is given by

t* ~ 1/AE ~ (. (6.176)

This is the break time, after which the quantum features of the dynamics
become apparent. Diffusion up to time ¢* involves a number of levels given
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by
VAm)2) & /Dyt ~ L. (6.177)
The relations (6.176) and (6.177) imply that
t* = 0 = Dp,. (6.178)

Therefore, the quantum localization length ¢ for the average probability
distribution is approximately equal to the classical diffusion coefficient.
Note that, in accordance with the correspondence principle, the time scale

t* o~ 7 (6.179)
eff
diverges as i, — 0. Moreover, t* > tg. Therefore, classical-like diffusion
is possible, in the absence of exponential instability, up to time t* > tpg.

Note that, if the kicked rotator is studied on a torus of size N (measured
in number of levels), then localization cannot take place if £ > N. In
this case the diffusion time t4 (given by Eq. (6.173)) is shorter than the
localization time ¢* and the Heisenberg time ¢y, after which the discreteness
of the energy spectrum becomes manifest, is simply given by the inverse
mean level spacing: tg ~ N.

In Fig. 6.24 we compare the quantum evolution of an initially narrow
wave packet with the classical evolution of an ensemble of trajectories,
demonstrating both the Ehrenfest and the Heisenberg time scales. In order
to allow direct comparison between the “quantum phase-space distribution”
and the classical phase-space distribution, we plot the quantum Husimi
function.'® Due to exponential instability, the initial wave packet as well
as the classical trajectories are spread over the entire interval 6 € [0, 27| in
approximately a couple of kicks (see the plots of Fig. 6.24 at times t = 0,
t =1, and t = 3). This corresponds to the Ehrenfest time. After that time
the initial wave packet is “destroyed”, in that it splits into many new small
packets. Nevertheless, the quantum distribution follows the distribution
of classical orbits (see Fig. 6.24, middle). However, while the distribution
of classical points spreads indefinitely according to the diffusion process,
the quantum distribution saturates at some maximum width (see Fig. 6.24,
bottom). This determines the Heisenberg time scale.

10The Husimi function at a given point (6,I) is obtained by the projection of the
quantum state on the coherent state centred at that point. This corresponds to the
smoothing of the Wigner function on the scale of the Planck constant (see Chang and
Shi, 1986).
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Fig. 6.24 Classical and quantum evolution for the kicked-rotator model in momentum-—
angle variables I (vertical axis) and 6 (horizontal axis), with parameter values and initial
conditions as in Fig. 6.22. The dots represent classical trajectories while in the quantum

case the Husimi function is plotted (contour plots).

The figure shows snapshots at

different times: ¢t = 0 (top left), t = 1 (top right), t = 3 (middle left), ¢ = 10 (middle
right), t = 500 (bottom left) and ¢t = 5000 (bottom right).
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The concept of characteristic time scales of quantum dynamics recon-
ciles the absence of dynamical chaos (defined according to ergodic theory)
in quantum mechanics with the correspondence principle. The important
point is that the following two limits do not commute:

lim lim # lim lim . (6.180)

[t|—00 hetr—0 hets—0 |t|—o00

While the first order (left) leads to classical chaos, the second (right) results
in an essentially quantum behaviour with no chaos at all. Both true chaos
(characterized by exponential instability) and pseudochaos (characterized
by quantum diffusion) are transient phenomena confined to finite times (see
Fig. 6.25). The time scales up to which true chaos and pseudochaos are
seen in the quantum dynamics of classically chaotic systems diverge when
hegp — 0, in agreement with the correspondence principle.

LOCALIZATION

Int

PSEUDOCHAQOS

TRUE CHAOS

Inq

Fig. 6.25 A schematic drawing, for the kicked-rotator model, of the quantum-chaos
times scales as a function of the quasiclassical parameter ¢ = 1/heg: Ehrenfest time
scale (lower curve) and Heisenberg time scale (upper curve).

6.5.4 * Quantum chaos and Anderson localization

Dynamical localization has profound analogies with Anderson localization
of electronic transport in disordered solids. For the latter problem, of par-
ticular interest are the so-called tight-binding models, which are lattice
discretization of the Schrodinger equation. These models play an impor-
tant role in the investigation of the transport properties of solids at low
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temperature, where the electron wave function becomes very sensitive to
local impurities and imperfections of the crystal lattice.

The Anderson model in one dimension is described by the eigenvalue
equation

(Hu)p = Wytn + t(up—1 + upi1) = Bup, (6.181)

where u,, is the electronic wave function at site n, ¢t the strength of the
hopping terms between nearest-neighbour lattice sites (kinetic energy) and
the random site energies W,, are independently and homogeneously dis-
tributed in the interval [—W/2,W/2], where W determines the disorder
strength. The one-dimensional Anderson model exhibits exponentially lo-
calized eigenfunctions, no matter how small the disorder strength W is (see,
e.g., Lee and Ramakrishnan, 1985). For a given eigenfunction,

1
Up X exp(—z |n — n0|) , (6.182)

where / is the localization length and the eigenfunction is centred at some
site ng.

In the Anderson model, as well as in the kicked rotator, quantum inter-
ference effects forbid unbounded diffusion, in real space in the first case, in
momentum in the latter. This analogy can be formalized by means of the
following transformation, which maps the kicked rotator into a disordered
tight-binding model. The eigenvalue equation for the Floquet operator of
the kicked rotator reads

Ul) = exp(—iHoT) exp(=iV)|) = exp(—ieT)[¢),  (6.183)

where Hy = % is the unperturbed Hamiltonian and (for the kicked rotator)
V(0) = kcosf. After introducing the operators W and ¢, defined by

) 1+iW ) 1+t
eXp[—Z(HO - E)T] = m, exp(—ZV) = Tit, (6184)
and after defining
6) = (1—it)~ ), (6.185)

the eigenvalue equation (6.183) reduces to

(t+W)lg) = 0. (6.186)
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;ozofoo U’m|m>7

where (f|m) = \/%7 exp(im#). We then end up with the eigenvalue equation

We now expand |¢) over the momentum basis: |¢) =

+oo
Wotin + Y titings = Euy, (6.187)

l=—o0
(1#0)

where we have defined

W, = (n|W) = (n|[tan(%(e — Ho)T)) = tan(ieT — inT), (6.188)
_ _ vy _ L[ , v (6)
to= (llt) = —(iltan (%)) = —5 0 d@exp(zl@)tan(T), (6.189)

with E = —tg. The tight-binding model (6.187) can be seen as a generaliza-
tion of the Anderson model (6.181) and describes the motion of an electron
in a crystal with site energies W, and hopping matrix elements ¢;. Note
that, in contrast to the Anderson model, the hopping terms are not limited
to nearest-neighbour lattice sites.!!

Note that in (6.187) the site energies, in contrast to the Anderson model
(6.181), are not random but determined by the dynamics. Nevertheless, if
T'/(4r) is irrational, then the sequence W, turns out to be “pseudo-random”
and leads to the same localization phenomenon as the random sequence.
This has been confirmed by several numerical computations, showing the
localization of eigenfunctions in the case in which T is an irrational multiple
of 4r.

When T'/4r is rational the site energies W,, become periodic and there-
fore the electron is described by Bloch waves and moves freely in the crys-
tal. This situation corresponds to the so-called quantum resonances in the
kicked rotator. Let us observe that quantum evolution is endowed with two
different periods: the first (T') is explicitly specified by the perturbation,
the second is 47 and follows from the free-evolution peculiarity of having
a spectrum given by integers, so that the Floquet operator is unchanged
when T' — T + 4xn. Naively speaking, the free rotator has energy levels
E,, = m?/2 and the photon energy is 27 /T’; the resonance condition is met
whenever an integer number of photons matches the transition between
unperturbed levels. This condition corresponds to rationality of the ratio

H1n the case of the kicked-rotator, the transformation ¢t = — tan(%) = - tan(@)
must satisfy the bound |kcosf| < 7, to avoid singularities. This restriction can be

overcome by means of a more complicated mapping, as shown by Shepelyansky (1986).
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T /47 between the two periods. In this case the energy of the rotator grows
quadratically in time, a phenomenon without a classical analogue.

It should be stressed that in the dynamical case (i) localization is related
to quasi-energy eigenfunctions and occurs in momentum instead of config-
uration space and (ii) no external random element is introduced since the
perturbation is periodic. For this reason localization due to classical chaos
is known as “dynamical localization”, to distinguish it from Anderson lo-
calization due the presence of disorder in the Hamiltonian.

6.5.5 * The hydrogen atom in a microwave field

One of the most significant cases in which classical and quantum chaos
confronted each other was the explanation of the experiments on the mi-
crowave ionization of highly excited hydrogen atoms, first performed by
Bayfield and Koch (1974). Hydrogen atoms prepared in very elongated
states with a high principal quantum number ng ~ 63 — 69 were injected
into a microwave cavity and the ionization rate was measured. The mi-
crowave frequency was w = 9.9 GHz, corresponding to a photon energy
approximately a hundred times lower than the ionization energy of level
66 and even lower than the energy required for the transition from level
66 to 67. Much surprise therefore followed the discovery that very efficient
ionization occurred when the electric field intensity exceeded a threshold
value € ~ 20V /cm, much lower than the value for Stark ionization in a
static field. Numerical simulations (Leopold and Percival, 1978) showed
that classical mechanics could reproduce the experimental data quite well,
as suggested by the correspondence principle, in view of the high quantum
numbers involved. Subsequent analysis (Jensen, 1982, Delone et al., 1983),
still in classical terms, explained the threshold intensity as the critical value
for the onset of chaotic diffusion in the action variable n. However, the hy-
drogen atom is a quantum object and it is possible to find experimentally
appropriate parameters such that, similarly to the kicked-rotator model,
the classical chaotic diffusion halts due to quantum interference effects.

The Hamiltonian for a hydrogen atom interacting with a time-periodic
linearly polarized electric field is, in the dipole approximation,

p? 1
H = 5 + ez cos(wt). (6.190)
r

Here € and w are the strength and the frequency of the electric field, directed
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along z. Note that atomic units are used.!? When the electron is in a state
that is very extended along the direction of the field, the one-dimensional
model, described by the Hamiltonian

2
1
Hy = ‘% — — 4 ezcos(wt), z > 0, (6.191)
z

is a good approximation to the real three-dimensional motion. The unper-
turbed Hamiltonian Hf?i) = % - % describes both bounded (with negative
energy, E < 0) and unbounded motion (E > 0); as far as we are interested
in exploring the dynamics that precedes ionization, we are confined to neg-
ative energies and, accordingly, we introduce action-angle variables (n, 6),

thus obtaining

1
Hyg = ~53 + ez(n, 0) cos(wt). (6.192)

We remark that classical dynamics depends only on the rescaled quan-
tities €9 = eng and wp = wn@, where ng is the initial value of the action
variable (in the quantum case, the initial value of the principal quantum
number). To prove this scaling, it is sufficient to operate the transforma-
tions

z = — 2, t— —t, € — nge, W — niw. (6.193)
ng U
They imply p = % — nop and Hiq — n3Hyq. Since the Hamiltonian is only

multiplied by a constant, the equations of motion do not change. We simply
rescale the size of the trajectories. If the initial value of the unperturbed

energy is £ = —#, then (6.193) allows us to scale E to the energy of the
0
first Bohr level, £ — ngE = —%. Note that €y and wg are the ratios of €

and w with the strength of the Coulomb field (e = 22 ~ ng*) and with
the frequency of the unperturbed electronic Kepler motion (wx = mng 3).
The rescaled time is measured, up to a factor 27, in number of periods of
the unperturbed Kepler motion: n—lgt = QWﬁ, where T = 2mng.

Exercise 6.16 Prove that the scaling (6.193) is no longer valid in quan-
tum mechanics.

If the field frequency exceeds the electron frequency (wo > 1), it can
be shown (see Casati et al., 1988) that the motion of system (6.192) is

12We pass from the Gauss system to atomic units (a.u.) by setting m = 1, e = 1,
h = 1, where m and e are the mass and charge of the electron. We have € (V/cm) =
5.14 x 10% (a.u.), v (GHz) = 6.58 x 10%w (a.u.), where v = w/(2m).
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approximately described by a map over one Kepler period of the electron,
the so-called Kepler map:

N = N + Eksin ¢,
_ - s/ (6.194)
= + _ —N s
6= o+ = (W)
where N = E/w, ¢ is the field phase at the perihelion and
koA 2.6 (6.195)

Ww5/3

is the perturbation parameter.'® Note that the Kepler map is defined only
for states such that N < 0: if, on iterating this map, we end up in the
continuum (N > 0, that is £ > 0) then the electron must be considered
as ionized. The linearization of the second equation in (6.194) around the

initial value Ny = _ﬁﬁ reduces the Kepler map to the standard map:
0

{ Ny = Ny + ksin g, (6.196)

¢ = ¢+ TNy,

where Ny = N — Ny has, in the quantum case, the meaning of the number
of photons absorbed by the atoms, T' = 67w?ng and an irrelevant constant
phase shift has been neglected in the second equation.
As we saw in Sec. 6.5.3, the border for the transition to chaos is given
by K = kT = 1, which gives
1

€c N W, (6197)

that is, in rescaled units,

1
€oc ~ —1/3

~ (6.198)
49w,

This is the classical chaos border above which, according to classical me-
chanics, the electron diffuses until ionization.

On the other hand, we know from the quantum kicked-rotator model
that localization takes place over a length (here measured in number of
photons)

k2 €2

ly ~ — ~ 33

5 o7 (6.199)

I3 A further condition for the validity of the Kepler map is that e < 5w%/3 | see Shep-
elyansky (1994).
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Therefore, the ionization process in the quantum hydrogen atom under a
microwave field is governed by two relevant lengths:

(i) the localization length (measured in number of photons) £,

(ii) the “sample size” Ny, namely the number of photons required to reach
the continuum starting from the initial state with principal quantum
number ng. This number is given by

1

Nr = .
! 2ndw

(6.200)

If £, < Njp, then quantum localization takes place and no ionization is
possible. On the other hand, if £ > Ny then the process of chaotic diffusion
goes on until ionization. The condition ¢4 = Ny, that is

7/6

€q R 0.4£, (6.201)

no
gives the so-called quantum delocalization border. In order to have chaotic
ionization, € > €4 is required.

The above predictions have been confirmed by experimental results on
the microwave ionization of hydrogen atoms (Galvez et al., 1988; Bayfield
et al., 1989), thus providing experimental evidence of the quantum sup-
pression of classically chaotic diffusion due to the localization phenomenon.

A comparison of the localization theory with the experimental data
obtained by Bayfield et al. (1989) is shown in Fig. 6.26. The empty circles
represent the experimentally observed threshold values of the microwave
peak intensity for ionization of 10% of the atoms.!* The dotted curve is
the classical chaos border and the dashed curve is the prediction of the
localization theory for 10% ionization. The numerical data (filled circles)
are obtained from the integration of the quantized Kepler map. In such
simulations the interaction time, including the switching on and off of the
microwave field, was chosen to be the same as in actual experiments. The
agreement between experimental and numerical data is quite remarkable, in
that the Kepler map is only a crude approximation for the actual quantum
dynamics.'® Moreover, the localization theory gives a satisfactory average

14Both in the experiment and in numerical computations the ionization probability is
obtained as the total probability above a cutoff level n..

15Furthermore, though the numerical model is one-dimensional, in actual experiments
the initially excited state corresponds to a microcanonical distribution over the shell
with a given principal quantum number. The classical counterpart for this would be a
microcanonical ensemble of orbits. Nevertheless, the experimental data agree fairly well
with the predictions of the one-dimensional quantum Kepler map. The reason for this
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Fig. 6.26 The scaled 10% threshold field from experimental results (empty circles, taken
from Bayfield et al., 1989) and from numerical integration of the quantum Kepler map
(filled circles). The dashed curve is the quantum theoretical prediction according to lo-
calization theory, the dotted curve is the classical chaos border (figure taken from Casati
et al., 1990).

It can be seen from Fig. 6.26 that both the numerical and experimental
data exhibit sensible deviations from the average prediction. These fluc-
tuations are analogous to the conductance fluctuations observed in finite
solid-state samples (see Casati et al., 1990). In the microwave ionization
of hydrogen atoms there is a finite “photonic lattice” since a finite number
of photons is required to ionize the atom. However, while in the solid-state
case (described by the Anderson model) the fluctuations can be traced
back to the randomness of the potential, in the hydrogen atom the source

agreement is the following: due to the existence of an approximate integral of motion,
the main contribution to excitation turns out to be given by orbits that are extended
along the direction of the linearly polarized external field (see Casati et al., 1988). For
such orbits, the use of the one-dimensional model is fully justified.
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of fluctuations is dynamical chaos.

6.5.6 * Quantum chaos and universal spectral fluctuations

Level-spacing distributions. Let us consider the following general ques-
tion: given the spectrum of a quantum system, can we determine whether
the corresponding classical system is chaotic or integrable? For instance,
consider two-dimensional billiards, such as circle and Sinai billiards (in the
latter case, the boundary is a square with a reflecting disk at the centre)
(see Fig. 6.27). The motion of a classical particle bouncing elastically inside
the circle billiards is completely different from the motion inside the Sinai
billiards. The circle billiards is integrable since the number of degrees of
freedom (two) is the same as the number of constants of motion, i.e., energy
and angular momentum. This means that the motion is almost periodic,
there is no decay of correlations and the instability is only linear in time
(the maximum Lyapunov exponent is equal to zero). Motion in the Sinai
billiards is instead completely chaotic with positive Lyapunov exponent.
The spectrum of motion is continuous and correlations decay.'®

o

Fig. 6.27 The circle billiards (left) and Sinai billiards (right).

If we quantize these two systems, then we know that in both cases we
have a discrete sequence of eigenvalues E,, = % and eigenfunctions v, of
the Schrédinger equation (V2 + k2)v,, = 0 with Dirichlet boundary condi-
tions (the wave function vanishes at the boundary of the billiards). For the
circle, the sequence of eigenvalues F,, can be computed analytically and is
given by the zeros of the Bessel functions of the first kind. For Sinai billiards
the sequence of levels E!, can only be computed numerically, yet we know
it forms a discrete sequence. Is there any qualitative difference between the

two sequences E,, and E/,? Certainly, the structure of the eigenvalues and

16Note that the origin of the chaotic behaviour of the Sinai billiards is the defocusing
effect of the disk, due to its negative curvature.



Decoherence 401

eigenfunctions must possess some peculiarity in such a manner that, when
taking the classical limit, in one case (circle billiards) the motion becomes
regular, while in the other case (Sinai billiards) it becomes wildly erratic
and chaotic. Can we identify such properties? We should expect that they
will reside in different statistical properties of the eigenvalues.

A first quantity of interest is the smoothed level density p(F). For a
two-dimensional billiards it is given by the famous Weyl formula (obtained
by imposing the Dirichlet boundary conditions):

m L 2m
B(E) ~ a2 6.202
PE)~ omd =\ eE (6.202)

where A is the area of the billiards and the second term, which contains the
length L of the perimeter of the billiards, vanishes for large E.'7 There-
fore, by increasing the energy F, the density tends to a constant that only
contains the area of the billiards and does not depend on its shape. It is
now clear that the density p(E) cannot carry information on the chaotic
or integrable nature of the billiards (which clearly depends on its shape).

17The Weyl formula (6.202) can be derived from a semiclassical computation of the
density of states. We assume that the number of states having energy smaller than E
is equal to the number of cells of size (2h)? contained in the phase-space volume Q(E)
corresponding to energy smaller than E:

QUE) = / dqdp,
H(q,p)<E

where (¢,p) are the phase-space coordinates and H(q,p) the system Hamiltonian. For

2
a particle with energy E = %, moving in a two-dimensional billiards of area A, the

phase-space volume Q(E) = 7|p|2A = 2rmEA. Therefore, the mean number of levels
with energy smaller than E is

N(E) = = ,
(B) (27h)? 2mh?
which implies
_ dN(E) m
PE) = g onh?

This gives the first term in (6.202). The correction term in (6.202) can be obtained by
observing that the wave function 1) must vanish at the boundary of the billiards, so that
the effective area A is smaller by a factor dA. The width of the strip where 9 =~ 0 is of
the order of the de Broglie wavelength A. Hence, 6A ~ AL = —I I where L is the

V2mE
length of the billiards perimeter. Thus,

m

Y —
p(E) =

(A—46A4A),

which directly leads to the Weyl formula (6.202).
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In particular its consideration cannot answer the famous question posed by
Mark Kac [Amer. Math. Monthly 73, 1 (1966)]: “Can one hear the shape
of a drum?”. More precisely, can one deduce the shape of a plane region
by knowing the frequencies at which it resonates?

In order to discriminate between regular and chaotic billiards one needs
to consider fluctuation properties; that is, how levels are distributed around
the average density p(FE).

As spectra corresponding to different systems or different spectral re-
gions (corresponding to different values of the energy) of the same system
have in general different average densities p, we must ensure uniformity of
the average spacings before comparing fluctuations. This is achieved by a
local (in energy) renormalization of the unit of energy. Such a procedure is
known as unfolding and is accomplished by defining

ern = N(Ep), (6.203)

where N (E) is the average number of levels with energy smaller than E.'8

In this manner, we separate the smooth part p(F) = dl:i/g:) of the energy

density from its fluctuations. We now substitute the original set {Ex} of
eigenvalues with the new set of numbers {e;}. By construction, these num-
bers have mean level spacing (ex+1 — ex), equal to unity ((...), denoting
the average over k). From now on, we shall call E, the unfolded levels e.

The simplest quantity of interest in describing level fluctuations is the
level-spacing distribution P(s), where P(s)ds denotes the probability of
finding two adjacent levels with energy separation in the interval [s, s + ds].
That is, if s; = F;4+1 — FE;, then the probability that s < s; < s+ ds is
given by P(s)ds. Note that f;;ooo dsP(s) = 1 and, due to the unfolding
procedure, 5 = fOJrOO dssP(s) = 1.

The energy levels of the harmonic oscillator are perfectly correlated and
equally spaced, so that P(s) reduces to a § function centred at s = 1, namely
P(s) =0(s—3) = d(s—1). In the opposite limit, in which the energy levels
are completely uncorrelated (randomly distributed), it is possible to prove

18 At large energies we can generalize what explained above for two-dimensional bil-
liards and compute N(F) as

N(E) = ﬁ/dqdp,

H(q,p)<E

where d is the number of degrees of freedom for the system under examination.
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(see exercise 6.17) that P(s) is given by the Poisson distribution:
P(s) = Pp(s) = exp(—s). (6.204)

Exercise 6.17 Derive the Poisson distribution (6.204) for a random se-
quence of energy levels.

Another measure of the deviation of the levels from the average spac-
ing is given by the spectral rigidity As(L), which is defined as the mean
square deviation of the best local straight-line fit to the staircase cumula-
tive spectral density N(E) over the scale L. Here the staircase function
N(E) gives the number of levels in the interval (—oco, E], and we assume
that the spectrum has been unfolded, so that the local average level density
is independent of E. We then define

1 a+L
As(L,a) = — min/ dE[N(E) — AE — B]*. (6.205)
L ABJ,
Usually, one is interested in the quantity As(L) = (As(L, a)),, obtained
after averaging Az (L, @) over q, i.e., over different parts of the energy spec-
trum (if we assume that the spectrum is translationally invariant, then As

does not depend on «). For the harmonic oscillator Ag(L) = %, indepen-
dently of L. When instead the energy levels are uncorrelated we obtain
L
L) = — 6.206
(L) = 35, (6.206)

independently of . Note that, in contrast to the nearest-neighbour spacing
distribution P(s), the spectral rigidity As(L) measures long-range correla-
tions in the energy spectrum.!®

Random-matrix theory. There exists a well developed theory, known
as random-matrix theory (RMT), which describes the statistical properties
of complex quantum systems. RMT was introduced and developed at the
beginning of the 1950’s on the basis of the observation that, for very “com-
plicated” systems such as those with a large number of degrees of freedom,
it is too difficult and practically meaningless to integrate the equations of
motion or to diagonalize huge (Hamiltonian) matrices. In analogy with

19 An alternative measure of the stiffness of the spectrum often used in the literature
is the level number variance X2, defined as

$2(L) = ([n(L, @) — (n(L, a))a]?)

o’

where (after unfolding) n(L, ) counts the number of levels in the interval [o, o + LJ.
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classical statistical mechanics, one is not interested in the exact determina-
tion of the individual energy levels but only in their statistical properties.
Indeed, in complex systems such as heavy nuclei or excited molecules, the
knowledge of exact states is meaningless in the same sense as the precise
knowledge of positions and velocities in systems with a large number of
degrees of freedom is meaningless. For instance, when considering a gas
of O(1023) molecules enclosed in a vessel, one is not interested in the posi-
tions and velocities of the individual molecules but in global thermodynamic
quantities such as pressure or entropy.

As stated by Dyson [J. Math. Phys. 3, 140 (1962)]: “ .. there must
come a point beyond which such analyses of individual levels cannot use-
fully go. For example, observations of levels of heavy nuclei in the neutron-
capture region give precise information concerning a stretch of levels from
number N to number (N+n), where n is an integer of the order of 100 while
N is of the order of 105. It is improbable that level assignments based on
shell structure and collective or individual-particle quantum numbers can
ever be pushed as far as the millionth level. It is therefore reasonable to
inquire whether the highly excited states may be understood from the dia-
metrically opposite point of view, assuming as a working hypothesis that
all shell structure is washed out and that no quantum number other than
spin and parity remain good. The result of such inquiry will be a statistical
theory of energy levels. The statistical theory will not predict the detailed
sequence of levels in any one nucleus, but it will describe the general ap-
pearance and the degree of irreqularity of the level structure that is expected
to occur in any nucleus which is too complicated to be understood in detail

What is here required is a new kind of statistical mechanics, in which
we renounce exact knowledge not of the state of a system but of the nature
of the system itself. We picture a complex nucleus as a “black box” in which
a large number of particles are interacting according to unknown laws. The
problem then is to define in a mathematically precise way an ensemble of
systems in which all possible laws of interaction are equally probable”.

This program, initiated by Wigner, led to the development of random-
matrix theory. The main idea is that the statistical properties of complex
systems are the same as those of an appropriate ensemble of random ma-
trices. The space-time symmetries obeyed by the system impose certain
conditions on the admissible matrix ensemble. Here we limit ourselves to
the consideration of the following two main cases, corresponding to different
RMT ensembles:
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If the system is invariant under time-reversal and rotations, the Hamil-
tonian matrices can be chosen as real symmetric. In this case, the
appropriate ensemble of random matrices is the Gaussian orthogonal
ensemble (GOE), defined in the space of N x N real symmetric matrices
(where N is a large integer) by two requirements:

(a) The ensemble is invariant under every orthogonal transformation
H— H =WT'HW, (6.207)

where W is any real orthogonal matrix. This means that the prob-
ability py(H)dH that a matrix H belongs to the volume element
dH = Higj dH;; (dH;; being the differential increment of the matrix
element H;;) is invariant under orthogonal transformations; that is,
pn(H)dH = py(H')dH'.

(b) The various matrix elements H;j;, i < j, are statistically indepen-
dent random variables. Therefore, the probability density function
pn (H) is a product of functions p;;(H;;) depending on a single ma-
trix element: py(H) = [[,<; pij(Hij).

It can be shown that these two requirements uniquely determine the
ensemble (see Mehta, 1991). We can then write the function py(H) as

Tr(H?
pn(H) = CNexp[— 4( ! q , (6.208)
g
where
Tr(H?) = > Hp+2 > H} (6.209)
1<i<N 1<i<j<N

and the constants Cy and o are fixed by the normalization and choice
of the unit of energy. Therefore, for the GOE the matrix elements are
Gaussian distributed with zero mean and the same variance o2, except
for the diagonal elements, for which the variance is 202.

If time-reversal invariance is violated (this is the case, for instance, of
a charged particle in a magnetic field), then the Hamiltonian matrices
are complex Hermitian. In this case, the appropriate ensemble is the
Gaussian unitary ensemble (GUE), defined in the space of Hermitian

matrices by the following properties:

(a) The ensemble is invariant under every unitary transformation

H — H = U 'HU, (6.210)
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where U is any unitary matrix. In this case the probability
pn(H)dH that a matrix H belongs to the volume element dH =
[ic; dRe(H;;)] I 1;.; dIm(H;;)] is invariant under unitary trans-
formations: py(H)dH = py(H')dH'.

(b) The matrix elements Re(H;;) (i < j) and Im(H;;) (¢ < j) are
statistically independent random variables.

Note that Eq. (6.208) is still valid but now

Tr(H?) = Y Hj +2> {[Re(H;)” + [Im(H;;)]’},  (6.211)

1<i<N 1<i<j<N
so that both Re(H;;) and Im(H;;) are Gaussian distributed.

A detailed theory has been developed for the random-matrix ensembles
GOE and GUE. A main result refers to the level-spacing statistics P(s). For
the GOE case, P(s) is well approximated by the famous Wigner surmise:

O(ey ~ T _T2
Py (s) = 5 sexp( 15 ), (6.212)
while for the GUE ensemble
32 4
U N 2 )
Py, (s) = ol exp( o ) (6.213)

We note that the Wigner surmise is exact for 2 x 2 matrices (see exer-
cise 6.18).

Exercise 6.18 Derive the Wigner surmise (6.212) for an ensemble of
2 x 2 real symmetric matrices with independent random matrix elements
Hiy, Haz, Hs.

It is also interesting that the spectral rigidity As(L) o In L both in
the GOE and in the GUE case. The logarithmic dependence of Az(L)
indicates a strong rigidity of the spectrum, which has to be compared with
As(L) = % for a random sequence of eigenvalues and with the maximum
rigidity As(L) = 1—12 for a regular sequence of equally spaced levels.

The predictions of RMT agree very well with experimental data. This
statement is demonstrated in Fig. 6.28, which shows the distribution P(s)
of nuclear-level spacings (as usual, s is measured in units of the mean
level spacing). Data are obtained from neutron resonance spectroscopy
and high-resolution proton scattering and refer to quasi-bound states of
the compound nucleus far from the ground state region. The agreement
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with the predictions of RMT is impressive.2 This is especially true since
the theory has no adjustable parameter.

10 T T —
i Poisson NDE 1
| 1726 spacings E
05} y N
GOE
L - 4
1 |
0 1 2 3

Fig. 6.28 The nearest neighbour spacing distribution for the “nuclear data ensemble”
(NDE), constructed from 1726 spacings of levels of the same spin and parity, corre-
sponding to 36 sequences of 32 different nuclei. For comparison, the RMT prediction
(GOE ensemble) and the Poisson distribution are also shown (solid curves). The figure is
reprinted with permission from Bohigas et al. (1983). Copyright (1983) by the American
Physical Society.

We remark that this satisfactory agreement is related, for many-body
interacting systems, to the complexity of the systems considered and not to
the underlying interaction, which may be nuclear or electromagnetic. One
therefore expects that spectra of highly excited atoms or complex molecules
should also be described by GOE. This expectation is confirmed in Fig. 6.29,
obtained by using atomic energy levels of neutral and ionized atoms in the
rare-earth region (left) and the spectrum of a polyatomic molecule such as

The following point should be stressed: we are interested here in the

20Note that the energy-level spacing distribution for states with the same spin J and
parity m agree with the Wigner surmise. If instead we consider all states, corresponding
to different values of the quantum numbers J and m, then the Poisson distribution fol-
lows. This result can be explained as follows. When there are good quantum numbers
corresponding to exact integrals of motion, such as angular momentum and parity, and
when the basis states are labelled by these quantum numbers, then the Hamiltonian
matrix splits into independent blocks (the matrix elements connecting these blocks van-
ish). Therefore, energy levels coming from different blocks are perfectly uncorrelated.
If several such independent sequences are analyzed together, then the Poisson distribu-
tion follows (if two adjacent levels correspond to different values of the good quantum
numbers, then they are uncorrelated).
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Fig. 6.29 A histogram of level spacings for 140 vibrational levels taken from level se-
quences of atoms in the rare-earth region (left) and for 140 energy levels of NOg (right).
In both cases the Wigner distribution (6.212) is shown (in the right-hand plot the Pois-
son distribution is also drawn). The figures are reprinted with permission from Camarda
and Georgopulos (1983) (left) and from Zimmermann et al. (1988) (right). Copyright
(1983, 1988) by the American Physical Society.

properties of a single system and we are attempting to describe them by
averaging over an ensemble of Hamiltonians. This is only meaningful if the
properties in which we are interested are the same for almost all systems of
the ensemble. More precisely, what is required here is a technical property,
known as self-averaging, which is an ergodic-like property, according to
which in some appropriate limit (e.g., as N — oo, where N is the dimension
of the matrices in the ensemble) the dispersion of the relevant quantities
over the ensemble tends to zero. Under this condition, “typical” values
of these quantities are very close to the average values: the latter are in
general easier to compute and this constitutes the main advantage of the
ensemble method. The level-spacing distribution for example turns out to
be the same when computed along several levels of a given nucleus or when
computed by averaging over an ensemble of nuclei.

Quantum chaos and level statistics. The main idea that led to the in-
troduction of RMT was the notion of “complexity”, which was at that time
quite vague and mainly related to the large number of degrees of freedom
involved in a many-body problem. Nowadays we have a well defined notion
of complexity usually referred to as “chaos”. As we know, also systems with
a very small number of degrees of freedom (e.g., two-dimensional billiards)
can exhibit dynamical chaos and therefore their motion is very complicated.
It is then quite reasonable to expect that the level statistics of such systems
are described by RMT. This expectation was confirmed by many numer-
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ical simulations. In Fig. 6.30, the nearest-neighbour-spacing distributions
for circular and Sinai billiards are shown. The first model corresponds to
integrable classical dynamics, the second to a fully chaotic classical system.
In contrast to the case of circular billiards, for which the smallest spacings
are more frequent, the results for Sinai billiards are fully consistent with
the GOE predictions.?!?2 Note that the nearest-neighbour-spacing distri-
bution for the circular billiards is in agreement with analytical (Berry and
Tabor, 1977) and numerical results, showing that (apart from exceptions
such as the harmonic oscillator), if the corresponding classical dynamics
is completely integrable, then P(s) is equal to the Poisson distribution,
P(s) = exp(—s).
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Fig. 6.30 The nearest-neighbour-spacing distributions P(s) for the circular (left) and
Sinai billiards (right). Note that in the left-hand figure the energy is not normalized to
the mean energy and the histogram is not normalized to total unit area. The figures are
reprinted with permission from McDonald and Kaufman (1979) (left) and Bohigas et al.
(1984) (right). Copyright (1979, 1984) by the American Physical Society.

The main difference between the level-spacing statistics corresponding
to classically integrable or chaotic systems is that in the first case (Poisson

21 These results have been reproduced in microwave cavities constructed in the shape
of integrable or chaotic billiards. The spacings between microwave normal mode frequen-
cies of the cavity follow the Poisson distribution in the integrable case and the Wigner
distribution in the chaotic case (see Stockmann, 1999). These results are interesting as
they show that RMT can be applied not only to quantum mechanics but also to classical
electromagnetic waves.

22Note that the successful application of RMT to classically chaotic systems is not
confined to toy models such as the Sinai billiards. For instance, highly excited levels of
the hydrogen atom in a strong magnetic field exhibit spectral fluctuations in agreement
with RMT (see Friedrich and Wintgen, 1989).
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distribution) there is a high probability of finding small spacings (level clus-
tering), while in the latter case (Wigner distribution) negligible probability
is assigned to spacings that are very small compared to the mean spacing.
Therefore, one can say that levels repel each other and this phenomenon is
known as level repulsion.

A qualitative justification of level repulsion is the following. Consider
two levels for the Hamiltonian H () that upon variation of the parameter
A undergo a close encounter. Around the crossing point it is then possible
to describe these two levels by means of nearly degenerate perturbation
theory. Hence, it is possible to restrict the analysis to that of a two-level
subspace; that is, to a 2 x 2 Hermitian matrix with matrix elements H;;
(1,5 = 1,2). Tts eigenvalues are given by

Ey = 1 (Hy + Hop) £ \/i (H11 — Ha2)? + |H12|%. (6.214)

From Eq. (6.214) it is clear that, by varying a single parameter, it is in
general impossible to make the square root vanish, as it is the sum of
two positive terms. Hence, the distance between the levels may attain
a minimum but cannot vanish in general (see Fig. 6.31, right). On the
other hand, level crossing is in practice possible for quantum systems that
are integrable in the classical limit (see Fig. 6.31, left). Indeed, in this
case the eigenfunctions of H are strongly concentrated around classical
tori, so that nearby (in energy) levels are in general peaked on distant
tori. Thus, the superposition between these two eigenfunctions is negligible
and Hia(A\) = 0. In this case, it is sufficient that the single condition
(H11— Ha2)(A) = 0 be fulfilled to obtain the level crossing Ey(A) = E_(A).

\/
e

> A > A

Fig. 6.31 A schematic drawing of level crossing (left) and avoided crossing (right).

The fact that the spectra of systems whose classical analogue is chaotic
show the same universal fluctuations as predicted by RMT is a conjecture
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mainly supported by numerical data.?®> Today there is overwhelming ev-
idence that, apart from exceptions corresponding to particular cases (see
Bohigas, 1991), fluctuations are described by the Poisson distribution for
integrable systems and are in agreement with RMT for chaotic systems. As
a consequence, the spectral statistics of quantum systems is usually taken
as a sort of characterization of quantum chaos, even in systems where the
classical limit is hard to define. Thus, the transition from integrability to
quantum chaos when some parameter of the system Hamiltonian is varied is
associated with the transition from the Poisson to the Wigner distribution
in the level-spacing statistics (see the model described in Sec. 6.5.7).

We shall not discuss in detail the properties of quantum eigenfunctions
in relation to the integrable or chaotic properties of a dynamical system.
We just quote a result due to Shnirelman, which states that for chaotic
billiards the squared n-th eigenfunction u?(x) tends weakly to the uniform
distribution as n — oo. This indicates that the eigenfunctions of quantum
chaotic systems are delocalized in phase space over the energy surface (er-
godic eigenstates).?* For integrable systems the eigenstates are non-ergodic:
they are instead concentrated around classical tori.

Note that classically chaotic systems that exhibit quantum localization,
such as the kicked-rotator model, conform to RMT predictions only when
the localization length is larger than the system size. In the opposite limit
of small localization length, eigenstates are very far from being ergodic and
the spectrum exhibits Poissonian statistics (see Izrailev, 1990).

Finally, it is worth mentioning that there is a conjecture that relates the
statistical behaviour of the complex zeros of the Riemann zeta function to the
statistical behaviour of the eigenvalues of large random matrices. The Riemann
zeta function is defined as

C(z) = Z; - wa, Rez > 1, (6.215)
n=1

P

where the product is over primes. The function {(z) can be extended by analytic
continuation elsewhere in the complex z plane, except for a simple pole at z = 1.
The Riemann hypothesis states that the complex zeros of ((z) all are along the

line Re(z) = %. If E, denotes the imaginary part of the n-th complex zero of

23Universal fluctuations in dynamical systems with classical chaos are beginning to be
understood in terms of Gutzwiller’s semiclassical periodic orbit theory (Miiller et al.,
2004).

24Note, however, that for finite n there exist scars; that is, non-ergodic eigenstates
that have prominent density near classical periodic orbits (see Heller, 1991).
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¢; that is, ((% +iE,) = 0, Ent1 > E,, then there is evidence that the level-
spacing distribution for the quantities E, follow the GUE spectral statistics.
It has been suggested that the E, are eigenvalues of a quantum Hamiltonian
obtained by quantizing a classical chaotic system without time-reversal symmetry
(Berry, 1985).

6.5.7 * The chaos border for the quantum computer
hardware

As an example of the transition to chaos, in this section we consider a
model of n spin—% particles (qubits) placed on a two-dimensional lattice
in the presence of an external magnetic field directed along z. Nearest
neighbour spins interact via an Ising coupling with random strength. The
Hamiltonian of the system is

H =) T+ Jjolol, (6.216)

<i,j>

where the operators o; are the standard Pauli matrices acting on the i-th
qubit, the second sum in the Hamiltonian only runs over nearest-neighbour
spins (at the borders of the lattice periodic boundary conditions are im-
posed), I'; corresponds to the energy separation between the states of the
qubit and J;; is the interaction strength between qubit ¢ and qubit j. The
parameters I'; and J;; are randomly and uniformly distributed in the inter-
vals [Ag—0/2, A¢g+9/2] and [—J, J], respectively. Hamiltonian (6.216) was
proposed (Georgeot and Shepelyansky, 2000) as a simple model of the quan-
tum computer hardware, in which system imperfections generate undesired
interqubit couplings J;; and energy fluctuations 8;.%°

For J = § = 0, the spectrum of the Hamiltonian is composed of n + 1
degenerate levels, and the interlevel spacing is 24, which corresponds to
the energy required to flip a single qubit. We study the case §,J < Ay,
in which the degeneracies are resolved and the spectrum is composed of
n + 1 bands, each band corresponding to states with given numbers of
spins up and down. Since 4, J < Ap, the interband coupling in (6.216)

25For I'; = T" and J;; = J independently of the site index, that is, without randomness,
Eq. (6.216) reduces to the Ising model in a transverse field. In the thermodynamic limit
n — oo this model exhibits a quantum phase transition at the critical value A = J/T" = 1.
The magnetization (o, ) of the ground state is different from zero for A > 1 and vanishes
at the transition. We note that the Ising model is paradigmatic for the study of the
relationship between the entanglement structure of the ground state and quantum phase
transitions, see Osborne and Nielsen (2002) and Osterloh et al. (2002).
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may be neglected and each single band can be studied separately. The
number of states in the j-th band (j = 0,...,n) is equal to the binomial
coefficient (?) Since the §; fluctuate randomly in an interval of size §,
each band at J = 0 (except the extremes) has a Gaussian shape of width
Ep ~ /né.?% The average number of states inside a band Np is of the
order of N/n = 2"/n, so that the energy spacing between adjacent states
inside one band is A,, = Fg/Np ~ n3/29-n§ , which becomes exponentially
small when n increases. The highest density of states is obtained for the
central energy band (with equal numbers of spins up and down) and we
therefore expect quantum chaos to show up there first. Hence, we shall
focus on the central band with zero magnetization (>, o7 = 0).

The first term in Hamiltonian (6.216) describes independent particles
and therefore cannot lead to quantum chaos. Indeed, the energy spectrum
of a non-interacting many-body system is given by the sum of independent
single-particle energies and thus RMT spectral statistics does not apply.
As we shall see in what follows, the second (interaction) term in (6.216)
may lead to quantum chaos behaviour.

The transition to ergodic eigenstates and to quantum chaos behaviour
can be detected from the change in the spectral statistics of the system.
In particular, the level-spacing statistics P(s) is a very convenient quantity
for numerical studies. Figure 6.32 (left) shows the P(s) distribution for a
lattice with n = 16 spins and three different values of the coupling strength
J. The transition is clearly seen in the spectral statistics from a Poisson
distribution (6.204) at small J to a Wigner (GOE) distribution (6.212),
characteristic of RMT for large enough J. To probe this transition in more
detail, it is useful to define a parameter 7 that varies continuously from
17 =1 (Poisson) to n = 0 (Wigner). We thus define

_ O [P(s) — PG (s)]ds
1= P~ P )]s (6:217)

where Pp(s) and P$ (s) are the Poisson and Wigner level-spacing distribu-
tions and sp = 0.4729. .. is their first intersection point. Figure 6.32 (right)
gives the dependence of the parameter 7 on the scaled coupling Jn/d (see
below for the physical motivation of this scaling). The Poisson to Wigner
crossover becomes sharper when n increases, suggesting a sharp transition
in the thermodynamic limit n — co. The minimum spreading of curves is

26The majority of states are inside this interval, while the total band width is ~ nd/2.
This is due to rare events in the sum of n random numbers.
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for n(J.) ~ 0.2, corresponding to the chaos border J.n/d ~ 3.7
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Fig. 6.32 Left: Level-spacing statistics for n = 16 spins, J = 0.05¢ (circles, n = 1.01),
J = 0.26 (triangles, n = 0.32), and J = 0.4 (squares, n = 0.05). The full curves show
Poisson and Wigner (GOE) distributions. The statistics is obtained from the states in the
middle of the central energy band (£5% of states around the centre). Right: Dependence
of 1 on the scaled coupling Jn /4§, for n = 9 qubits (circles, Np = 10* random realizations
of 8;,Jij), n = 12 (squares, Np = 103), n = 15 (diamonds, Np = 45), n = 16 (empty
triangles, Np = 23), and n = 18 (filled triangles, Np = 3). The figures are taken from
Benenti et al. (2001a).

Let us now explain the border for the transition to chaos by means of
a qualitative physical argument. It is convenient to refer to the “quantum
register states”; that is, to the basis of the eigenstates |i,,—1,%n—2, ..., %1, %0)
of (6.216) at J = 0 (where |ix) is an eigenstate of o7 and i, = 0 or 1). The
interaction term in (6.216) only couples quantum register states that differ
by the value of o, for exactly two spins. As a consequence, the Hamiltonian
matrix in the basis of quantum register states is very sparse; that is, only
a few matrix elements are non-zero. Indeed, a quantum register state is
only coupled to 2n other states among the 2™ available. We stress that this
sparsity is a very general property of many-body systems and is due to the
fact that the interaction in the natural world is two-body. Hence, a relevant
energy scale for the model is the level spacing A. between directly coupled
multi-particle states. This energy scale can be evaluated as follows. A
quantum register state is coupled to ~ n states in an energy interval of size
~ ¢§: out of the 2n non-zero couplings mentioned above we consider only
those inside the energy band; that is, we exclude the two-qubit transitions
|00) — |11) and |11) — |00) whose energy cost is 2A¢ > J,0. Thus,
A, ~ §/n. Note that there are two other relevant energy scales in the
problem: the average level spacing Ag between the two states of a qubit



Decoherence 415

(one-particle spacing) and the mean level spacing A, ~ n3/227"§ between
multi-qubit states. We have A, < A. <« Ap. The important point is
that A, and A,, vary in extremely different manners with respect to n:
A, drops exponentially with n, A, in a polynomial manner. The three
energy scales that are relevant to the problem are drawn in Fig. 6.33. At
small J the many-body problem (6.216) can be solved using perturbation
theory. This approach breaks down when the typical interaction matrix
element J between directly coupled states is of the order of their energy
separation A, ~ §/n. We can therefore estimate the chaos border J. from
the condition

Jo ~ A, ~ §/n. (6.218)

The quantum chaos regime corresponds to J > J.. This expectation is
in agreement with the numerical results shown in Fig. 6.32 (right). We
stress that the chaos border is exponentially larger than the multi-qubit
level spacing A,,.

My

-+

Ag

Fig. 6.33 A schematic drawing of the different relevant energy scales in (6.216): one-
qubit level spacing Ao, level spacing A, between multi-qubit states directly coupled by
the two-body interaction and energy spacing A, between multi-qubit states.

The transition in the level-spacing statistics reflects a qualitative change
in the structure of the eigenstates of Hamiltonian (6.216). While for J < .J.
these eigenstates are very close to the quantum register states, for J >
J. they become a superposition of an exponentially large number of non-
interacting eigenstates. The mixing of the non-interacting eigenstates takes
place inside a Breit—-Wigner energy width I' given by the Fermi golden
rule: T' ~ J2/A. ~ J?n/§. As a result, the residual interaction spreads a
quantum register state over an exponentially large number of states after a
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chaotic time scale

1 )
Ty = = ~ ——. 6.219
X r J2n ( )
This sets an upper time limit to the stability of a generic superposition of
states coded in the quantum computer wave function. In addition, it is
clear that a necessary requirement for quantum computer operability is the

possibility to operate many quantum gates within the chaotic time scale.

Exercise 6.19 Adapt the estimate (6.218) to the case in which the in-
teraction term in (6.216) is all to all; that is, H =}, I'iof +3°,,; Jijof 0.

6.5.8 * The quantum Loschmidt echo

As we have discussed in Sec. 6.5.1, classical chaotic motion is character-
ized by local exponential instability with respect to initial conditions. Such
characterization of dynamical chaos cannot be translated sic et simpliciter
in the quantum domain since, due to unitarity of quantum evolution, imper-
fections in the preparation of the initial state do not grow in time. Indeed,
given two initial states |¢/(0)),|¢(0)) we have

[W(8) = U@I(0)),  [o(t) = U®)s(0)), (6.220)

with U(t) unitary time-evolution operator from time 0 to time ¢. Therefore,
the scalar product does not change in time:

W(®)le(®)) = (¥(0)|¢(0)). (6.221)

In other words, the fact that in quantum mechanics there is no notion of
trajectories does not allow us to apply the criterion of stability with respect
to variation of the initial conditions.

In classical mechanics, one may describe the motion in terms of a phase-
space distribution function, whose evolution is unitary and governed by the
Liouville equation. However, in this description, instead of slightly changing
the initial conditions, one may study the stability properties by introducing
small variations of system parameters. It turns out that exponentially
unstable systems exhibit the same rate of exponential instability by slightly
changing the initial conditions with fixed parameters or the parameters with
fixed initial conditions. The advantage of the latter procedure is that it can
be directly extended to quantum mechanics, thus allowing a comparison of
the stability properties of classical and quantum motion.
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Let us therefore consider two slightly different Hamiltonians H and H, =
H + €V and take the scalar product

£t = O[Tl OU@LO)Z = [@ )], (6.222)

where U(t) and Uc(t) are the time-evolution operators corresponding to
H and H, respectively. The quantity f(¢) is known as the fidelity and
measures how accurate the solution remains under small perturbations of
the Hamiltonian. Expression (6.222) is also known as the Loschmidt echo
since it can be seen as a measure of the accuracy at which the initial state
|1(0)) is recovered by inverting the dynamics at time ¢ and returning to
time 0 with the perturbed Hamiltonian H..

The name Loschmidt echo derives from the famous Loschmidt paradoz, which
was raised by the Bohemian physicist Joseph Loschmidt against Boltzmann sta-
tistical theory. As is well known, in the second half of the nineteenth century
Boltzmann derived his famous equation. This equation describes the temporal
evolution of the function f(v,t), which gives the probability that a given molecule
in a gas has velocity v at time ¢. Boltzmann’s intent was to derive the second law
of thermodynamics from dynamical principles. He was able to prove the so-called
H-theorem. That is, he introduced the function

H(t) = / dv f(v,6) In f(u, 1) (6.223)

and showed that, as t — oo, H(t) approaches a minimum value. Correspondingly,
the function f(v,t) approaches the Maxwell velocity distribution. The entropy
S, which is proportional to —H, approaches a maximum value.

Loschmidt’s observation was based on the fact that Newton’s equations of
motion for the molecules in a gas are exactly time reversible. Therefore, by
reverting the velocities of the molecules, the system “goes backwards”. This
implies that for any initial condition for which H decreases (S increases) there
is an initial condition for which H increases (S decreases). Hence, Boltzmann’s
conclusion cannot be correct and these time-reversed evolutions appear to violate
the second law of thermodynamics. Boltzmann took Loschmidt’s criticism very
seriously and this led him to the statistical interpretation of the second law and
finally to the well-known expression (5.251) for the entropy.?”

We now know the solution to the Loschmidt paradox. In an isolated dynamical
system there are fluctuations, during which entropy may decrease for some time.
These fluctuations are less and less frequent as they become stronger and stronger.
In any event, if the system possesses the mixing property (see Sec. 6.5.1), then
for t — 400 (and also for ¢ — —oo) the phase-space density p(z,v,t) always

27"When Loschmidt died in 1895 Boltzmann said in his eulogy that “His work forms a
mighty cornerstone that will be visible as long as science exists.”
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converges, after coarse graining, to the microcanonical ensemble and the entropy

S = —kg [ plnp to its maximum, microcanonical value (5.251).

It is instructive to consider the classical Loschmidt echo f., which can
be defined in terms of classical probability distributions p(q, p, t):

fe(t) = A/dqdppe(q,p,t)p(q,p, t), (6.224)

where p and p. are the classical probability distributions obtained by evolv-
ing the same initial distribution p(g,p,0) up to time ¢t under the Hamilto-
nians H and H., respectively. The prefactor A is a normalization constant:

1

A= . (6.225)
\/f dqdpﬂ?(qvp,t)\/f dqdp p*(¢,p, t)
Note that p. and p are normalized to unit total probability:
/dqdpp(q,p,t) = /dqdppe(q,p,t) =1 (6.226)

For chaotic systems, with positive Lyapunov exponent A, it turns out
that the asymptotic decay of fidelity to its microcanonical value f.(co) is
the same as for correlation functions and therefore can be either power-
law or exponential. In the latter case, the rate of the exponential decay is
governed by the gap in the discretized Perron—Frobenius operator, which
describes the evolution of the coarse-grained distribution. Note that the
asymptotic decay rate is not given, in general, by the Lyapunov exponent.
The short-time decay of f. is instead different from that of correlation
functions. Indeed, it is exponential with a decay rate given by the Lyapunov
exponent. The Lyapunov decay starts after an initial transient time

t, = %m(%) , (6.227)

where v is the size of the initial distribution and € the perturbation strength.
Notice that this is the time required to amplify the perturbation up to the
size v of the initial distribution. The Lyapunov decay takes place in a short
time interval t, < t < t., where

f o~ %111(2—”) (6.228)

€

is the time taken to amplify the perturbation up to randomization of phases.
After this a diffusion regime (f(¢) o< 1/+/Dt, with D the diffusion constant)
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follows. This power-law decay goes on until the diffusion time tp ~ L?/D
(L is the system size) and is followed by relaxation to the microcanonical
equilibrium distribution with a rate determined by the gap in the discretized
Perron—Frobenius operator. Both the short-time and the asymptotic fidelity
decays are shown in Fig. 6.34 for the classical sawtooth map.?®

Two characteristics of classical fidelity decay are worth mentioning:

1. In both the short-time Lyapunov decay as well as in the asymptotic expo-
nential decay, the decay rate is independent of the perturbation strength
e (see Fig. 6.35). This fact, which may look quite surprising, is due to
the exponential character of the instability, which renders the strength
of the perturbation irrelevant. In systems with linear instability fidelity
depends on the perturbation strength. Note that in quantum mechan-
ics there is no exponential instability outside the Ehrenfest time scale.
Therefore, outside this scale, one expects the decay rate of quantum
fidelity to depend on perturbation strength.

2. If instead of a static perturbation we apply stochastic noise, the fidelity
decay remains the same. This means that the effect of a noisy envi-
ronment on the decay of fidelity for a classical chaotic system is similar
to that of a generic static Hamiltonian perturbation. Indeed, owing to
internal dynamical chaos, the deterministic or noisy character of the
perturbation is not important. This raises the question whether for
quantum systems that are classically chaotic static errors will have the
same effect as stochastic perturbations induced by the environment. An

28The gap in the discretized Perron-Frobenius operator can be numerically computed
using the following method:
(i) the phase-space torus (0 < 6 < 27, —wL < p < wL) is divided into N X NL square
cells;
(ii) the transition matrix elements between cells are determined numerically by iterating
for one map step the phase-space distributions given by the characteristic functions of
each cell: in this manner we build a finite dimensional approximation to the one-period
evolution operator U;
(iii) this truncated evolution matrix UN) (of size LN2? x LN?) is diagonalized: it is no
longer unitary, and its eigenvalues ng) are inside the unit circle in the complex plane.
The non-unitarity of the coarse-grained evolution is due to the fact that the transfer
of probability to finer scale structures in the phase space is cut-off, and this results in
effective dissipation;
(iv) the Ruelle—Pollicott resonances correspond to “frozen” non-unimodular eigenvalues,
namely ng) — z; when N — oo, with |z;| < 1. Convergence of eigenvalues to values
inside the unit circle comes from the asymptotic self-similarity of chaotic dynamics. The
asymptotic (¢ — oo) relaxation of correlations is determined by the resonance with
largest moduli, |Z| = max;|z;| < 1, giving a decay rate 7o = In|Z|. Note that there is a
gap 1 — |Z| between this resonance and the unit circle.
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Fig. 6.34 Decay of the classical fidelity g(t) = [fc(t) — fe(00)]/[fc(0) — fe(o0)] for the
sawtooth map (defined by Eq. (3.200)) on the torus 0 < 6 < 2w, —wL < p < wL,
with the parameters K = (v/5 + 1)/2 and € = 1073 (H and H. correspond to the
sawtooth map with parameter K and K + e, respectively) for different values of L =
1,3,5,7,10, 20, cc from the fastest to the slowest decaying curve. The initial phase-space
density is chosen to be uniform in the region 6 € [0,27), p € [—n/100,7/100] and
zero elsewhere. Note that for tc < t < tp ~ L?/D, that is, between the Lyapunov
decay and the exponential asymptotic decay (with rate determined by the gap in the
discretized Perron-Frobenius operator), there is a oc 1/v/Dt decay, as expected from
diffusive behaviour. Inset: magnification of the same plot for short times, with the
corresponding Lyapunov decay indicated as a thick dashed line. The figure is taken
from Benenti et al. (2003).

important role here is expected to be played by quantum chaos.

Let us now turn to the quantum case. The behaviour of quantum fi-
delity has been studied, numerically and analytically, with different tools:
semiclassical methods, perturbation theory, random-matrix theory (see the
guide to the bibliography at the end of this chapter). For chaotic systems,
one may distinguish three main regimes for the fidelity decay:

1. Lyapunov regime — For times shorter than the Ehrenfest time (6.174)
the quantum fidelity follows the classical behaviour, characterized by a
perturbation independent decay rate equal to the Lyapunov exponent A:

ft) ~ e A, (6.229)
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Fig. 6.35 Decay of classical fidelity for the classical sawtooth map with K =1, L =1,
initial distribution uniform in the strip 0 < 0 < 27, —v/2 < p < v/2 (v = 27/10%)
and zero elsewhere, perturbation strength e = 1072 (circles), 10™% (squares), 10~°
(diamonds), 10~ (triangles), and 10~7 (stars). The straight lines show the decay fe(t) o
exp(—At), with Lyapunov exponent A = In[(2 + K + VK2 + 4K)/2] = 0.96. Note that
this decay starts after a time o In(1/¢), in agreement with (6.227). The dashed line
indicates saturation to the microcanonical value fe(co) = v/(2nL) = 10~%. The figure
is taken from Benenti and Casati (2002b).

For sufficiently strong perturbation strength e, namely o = €/heg > 1,
the fidelity drops to its saturation value f(o0) = % before the Ehrenfest
time is reached. Here N ~ he_fg is the dimension of the Hilbert space
and d is the number of degrees of freedom.

2. Fermi golden rule regime — When the dimensionless parameter o < 1,
one may apply perturbation theory. The Fermi golden rule regime is
characterized by the exponential decay

ft) ~ e, (6.230)

where I' = UKZ. Here A is the average level spacing and U the typical
matrix element of the perturbation operator €V connecting the eigen-
states of H. This regime takes place for perturbation strengths o < 1
but such that U > A. As an example, in Fig. 6.36 we show the crossover
between the Fermi golden rule and the Lyapunov regime for the quantum
sawtooth map.
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Fig. 6.36 Quantum fidelity decay for the sawtooth map (3.200) in the quantum-chaos
regime. Here N = 210 levels, K = 0.75, ¢ = 1072 (squares), 2 x 1073 (diamonds),
3 x 1072 (triangles), 102 (circles), 2 x 10™2 (stars), and 3 x 10~2 (crosses). Dashed
lines correspond to Fermi Golden rule decay: f(t) ~ exp(—Ac?t), where A ~ 2.4.
Full lines show Lyapunov decay: f(t) ~ exp(—At), with maximum Lyapunov exponent
A~ 0.84. Note that the crossover between the Fermi golden rule and Lyapunov regimes
takes place at € ~ 5 x 1073, corresponding to o ~ 1. The dotted line shows the fidelity
saturation value f(co) = 1/N. A momentum eigenstate is chosen as initial wave function
and data are obtained after averaging over 100 different initial conditions. Figure taken
from Benenti et al. (2004).

3. Perturbative regime — If the perturbation is small enough, that is, U <
A, then stationary perturbation theory may be used and we have the
Gaussian decay

Ft) ~ eV (6.231)

It is clear from Eqs. (6.230) and (6.231) that the crossover between the
Fermi golden rule and Gaussian regimes takes place at time ¢ such that

I't ~ U (6.232)

% ~ tyg, where tg = % is the Heisenberg time. If the
perturbation is strong enough, then the fidelity completely decays within

Therefore, t ~

the Heisenberg time. In this case, exponential decay dominates. On the
other hand, if the perturbation is sufficiently small then no significant decay
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of the fidelity takes place before the Heisenberg time. In this case the
decay is Gaussian and occurs after the Heisenberg time. The value of the
perturbation that divides these two regimes is given by the condition I't ~ 1;
that is, I' ~ A, which coincides with (6.232). Note that, if the perturbation
is memoryless instead of static, then Fermi golden rule decay applies for
any o < 1.

Notice that quantum fidelity decay is perturbation dependent, except for
the Lyapunov regime. The existence of a Lyapunov regime is in agreement
with the correspondence principle, according to which within the Ehren-
fest time scale a quantum wave packet is exponentially unstable, just as a
classical chaotic orbit.

6.5.9 * Dynamical stability of quantum motion

Strong numerical evidence (see Shepelyansky, 1983) has been obtained that
quantum evolution is very stable, in sharp contrast to the extreme sensitiv-
ity to initial conditions and rapid loss of memory that is the very essence
of classical chaos. In computer simulations this effect leads to practical
irreversibility of classical motion. Indeed, even though the exact equations
of motion are reversible, any, however small, imprecision such as computer
round-off errors, is magnified by the exponential instability of orbits to the
extent that any memory of the initial conditions is effaced and reversibility
is destroyed. This fact is illustrated in Fig. 6.37, drawn for the kicked-
rotator model. Here the momentum is reversed after ¢ = 100 kicks. Due to
the exponential instability of classical orbits, the time reversibility for or-
bits with inverted momentum disappears after ¢, =~ 35. Note that computer
simulations are performed with round-off errors of the order of € ~ 10714
and

te = l|lne| ~ % (6.233)
is the time taken to amplify the perturbation and significantly modify the
trajectories. In contrast, as shown in Fig. 6.37, in the quantum case almost
exact reversion is observed in numerical simulations (in this case velocity
reversal is obtained by complex conjugation of the wave function, [¢)) —
|tv*)). Therefore, quantum dynamics, although diffusive (for times shorter
than the localization time t*), lacks dynamical instability. The physical
reason for this striking difference between quantum and classical motion
is rooted in the discreteness of phase space in quantum mechanics. If we
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consider the classical motion (governed by the Liouville equation) of some
phase-space density, smaller and smaller scales are explored exponentially
fast. These fine details of the density distribution are rapidly lost under
small perturbations. In quantum mechanics, there is a lower limit to this
process, set by the size of the Planck cell.
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Fig. 6.37 Practical irreversibility of classical motion (dashed curve) and reversibility
of quantum motion (solid curve) for the kicked-rotator model in the chaotic regime for
K =5, k= 50.

The results on fidelity decay give an explanation of the different sta-
bility of quantum and classical motion observed in computer simulations.
Round-off errors are always so small that ¢ < 1. If we model round-off
errors as memoryless errors of size €, then the quantum fidelity decays as
f(t) ~ exp(—c?t). For o ~ 10715, the simulation is then stable up to an
enormously long time scale

1

(q)
by~ =l (6.234)

On the other hand, in the classical case fidelity decays after a time

t) ~ %—HV ~ % [1+1n(%)}, (6.235)

where ¢, is the time to start the exponential fidelity decay with rate A.
Note that in this case the scaling is only logarithmic in €, due to exponen-



Decoherence 425

tial instability. Thus, in practice, classical motion is irreversible after the
logarithmically short time scale t;c).

We also point out that an exponential decay of the fidelity alone does
not imply exponential instability. For instance, Fermi golden rule decay
takes place after the Ehrenfest time scale in the absence of exponential

instability.

6.5.10 * Dynamical chaos and dephasing: the double-slit
experiment

A word of caution is necessary when discussing quantum fidelity decay and
its relation with the corresponding classical decay. Indeed, for a pure state
[1)(0)) one has

2 2

fo) = lay()1* = [(O)ULOU®)(0)]" = | Te(E(t)p(0))]

where ay,(t) is the fidelity amplitude, p(0) = |¢/(0)){(2(0)]| the initial density
matrix and E(t) = UJ(t)U(t) the echo operator. On the other hand, for a
mixed state p(0) = >, py[¥(0))(¥(0)] (3_,, Py = 1) one may define fidelity

in the following two manners:

, (6.236)

1.

i = Dp0o(t] _ B OOE00(0)

)
Te[p(0) Tr[p(0)]

, (6.237)

F(t) = ‘praw(t)r =N 2 fu)+ > puplap(t)al (1). (6.238)
" m b

Definition (6.237) is perhaps the most natural and popular, while def-
inition (6.238) is a straightforward generalization of expression (6.236) to
the case of arbitrary mixed initial states p(0); note that (6.238) can also be
written as F(t) = | Tr(E(t)p(0))|?. Both expressions reduce to (6.236) for
a pure initial state ([p(0)]2 = p(0)).

Notice that the function (6.237) has a well-defined classical limit that
coincides with the classical fidelity (6.224). We may write

f@t) = m%pwmﬂfwu (6.239)
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with transition probabilities

Wy = |(WIE[W)|. (6.240)

Therefore, the decay of this quantity has nothing to do with quantum de-
phasing and is just due to the transitions induced by the echo operator £
from the initially populated states to all empty states.

Expression F(t) is instead composed of two terms. The first is a sum
of fidelities fy = |ay|* of individual pure initial states with weights p3,.
The second term depends on the relative phases of the fidelity amplitudes;
therefore, fidelity F accounts for quantum interference and is expected to
retain quantal features even in the deep semiclassical region.

A question of interest is under what conditions these quantum interfer-
ence terms decay. It is known that the presence of an environment leads to
decoherence and thus to the decay of interference terms. Indeed, external
noise induces non-unitary evolution leading to the decay of the off-diagonal
elements of the density matrix in the eigenbasis of some physical observ-
able, thus restoring the classical behaviour. On the other hand we know
that classical deterministic systems, due to internal dynamical chaos, can
exhibit a motion that is indistinguishable from that of systems under the
action of an external random perturbation. Analogously one may inquire
whether deterministic chaotic evolution of a quantum state can lead to
quantum dephasing. It is possible to show that, for classically chaotic sys-
tems, internal chaos induces a dephasing, leading to the decay of fidelity F
at a rate that is determined by the decay of an appropriate classical corre-
lation function. Therefore, in this case internal dynamical chaos produces
a dephasing effect similar to the decoherence induced by the environment.

A more direct and vivid illustration of the dephasing effect of clas-
sical dynamical chaos is provided by the following numerical double-slit
experiment. The time-dependent Schrédinger equation ih%w(x,y,t) =

Hy(z,y,t), with H = %, is solved numerically for a quantum particle that
moves freely inside the two-dimensional domain as indicated in Fig. 6.38
(full line). Note that the domain is composed of two regions that are only
connected via two narrow slits. We shall refer to the upper bounded region
as to the billiards domain, and to the lower as the radiating region.

The lower, radiating region, should in principle be infinite. Thus, in
order to efficiently damp waves at finite boundaries, an absorbing layer
is introduced around the radiating region. More precisely, in the region

referred to as the absorber, a negative imaginary potential is added to the
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screen

absorber

Fig. 6.38 The geometry of the numerical double-slit experiment. All scales are in true
proportions. The two slits are placed at a distance s on the lower side of the billiards.
We choose scaled units in which the Planck constant A = 1, mass m = 1 and the base
of the triangular billiards has length a = 1. The circular arc (dashed curve) has radius
R = 2. The initial state |1(t = 0)) is a Gaussian wave packet (a coherent state) centred
at a distance a/4 from the lower-left corner of the billiards (in both Cartesian directions)
and with velocity v pointing to the midpoint between the slits. The screen is located
at a distance | = 0.4 from the base of the triangle. The magnitude of velocity v (in
our units equal to the wave-number k = v) sets the de Broglie wavelength A\ = 27 /k.
We also take k = 180 corresponding to approximately 1600 excited states of the closed
quantum billiards. The slit distance has been set to s = 0.1 = 3\ and the width of
the slits is d = A\/4. The wave-packet is also characterized by the position uncertainty
oz = oy = 0.24, which was chosen as large as possible in the present geometry in order
to have a small uncertainty in momentum o} = 1/(20,). The figure is taken from Casati
and Prosen (2005).

Hamiltonian: H — H — iV (z,y), V > 0, which, according to the time-
dependent Schrodinger equation, ensures exponential damping in time.

While the wave-function evolves with time, a small probability current
leaks from the billiards and radiates through the slits. The radiation prob-
ability is recorded on a horizontal line y = —I, referred to as the screen.
The experiment stops when the probability that the particle remains in the
billiards region becomes vanishingly small. The intensity at the position x
on the screen is defined as the perpendicular component of the probability
current, integrated in time:

[eS) . 2
I(z) = /0 dt Im[w (x,y,t)ﬁy Y(z,y,1) L (6.241)

Via the conservation of probability the intensity is normalized,
ffooo dxI(z) = 1, and is positive, I(z) > 0. I(x) is interpreted as the
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probability density for a particle to arrive at the screen position x. The
main result of the numerical simulations is shown in Fig. 6.39. As expected,
the intensity I(x) exhibits interference fringes when both slits are open, and
is a simple unimodal distribution when only a single slit is open.

2
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Fig. 6.39 Left: The total intensity after the double-slit experiment as a function of
the position on the screen. I(z) is obtained as the perpendicular component of the
probability current, integrated in time. The full curve indicates the case of a regular
billiards, while the dotted curve indicates the case of chaotic one. The dashed curve
indicates the intensity averaged over the two 1-slit experiments (with either one or the
other of the two slits closed). Right: The two pairs of curves represent the intensities on
the screen for the two 1-slit experiments. The full curves indicate the case of the regular
billiards while the dotted curves indicate the case of chaotic billiards, the results being
practically the same. The figure is taken from Casati and Prosen (2005).

Let us now consider a simple modification of the above numerical simu-
lation. The hypotenuse of the triangle is replaced by a circular arc (dashed
curve in fig. 6.38). This change has a dramatic consequence for the classical
ray dynamics inside the billiards; namely, the latter becomes fully chaotic.
This has also a dramatic effect on the result of the double slit experiment.
The interference fringes almost completely disappear and the intensity can
be very accurately reproduced by the sum of intensities [I;(x) + I2(x)]/2
for the two experiments where only a single slit is open. This means that
the result of such an experiment is the same as it would be in terms of
classical ray dynamics. Notice, however, that at any given instant there is
a definite phase relation between the wave function at both slits. Yet, as
time proceeds, this phase relation changes and is lost after averaging over
time.

In conclusion, if the billiards problem is classically integrable then in-
terference fringes are observed, as in the case of the usual configuration
of the gedanken double-slit experiment with plane waves. However, for a
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classically chaotic billiards, fringes disappear completely and the observed
intensity on the screen is the sum of the intensities obtained by opening
one slit at a time.

Notice that in the standard treatment of decoherence one starts from a
pure state and then takes the trace over the environment. In this manner
the state becomes mixed, the off-diagonal matrix elements decay and the
system looses its quantal features. In our case, we have unitary evolution,
the state is always a pure state and there is no decay of off-diagonal matrix
elements. However, provided we are in presence of internal dynamical chaos,
the process of integration over time leads to the same result. In this case
off-diagonal matrix elements decay, on average. This numerical experiment
shows that, by considering a pure quantum state in the absence of any
external decoherence mechanism, internal dynamical chaos can provides
the required randomization to ensure a quantum to classical transition in
the semiclassical region.

In closing this section, we wish to briefly discuss a different definition of
fidelity, which provides a measure of the “distance” between two probability dis-
tributions or two quantum states (an introduction to this quantity can be found
in Nielsen and Chuang, 2000). One starts with the fidelity F' of two probability
distributions {p.} and {¢.}, defined as

F(pz,qz) = vamqm~ (6.242)

Clearly, when the two distributions coincide, F(ps,gz) =Y, pz = 1.
The fidelity of two quantum states p and o is defined as

F(p,0) = Tr+/pt/2cp/2. (6.243)

Note that, if p and o commute, we can find a basis {|i)} where

p=> _mli)il, o=> sili)il. (6.244)

i i

The fidelity can then be written as
F(p,o) = Tr(Z\/_risi|i><i|) =" Vrs = F(ri,s:). (6.245)

That is, in this case the quantum fidelity F(p, o) reduces to the classical fidelity
F(r;, s;) for the distributions of the eigenvalues r; and s;.



430 Principles of Quantum Computation and Information. II

It is also interesting to note that the fidelity of a pure state |[¢)) and an
arbitrary state o is given by

F(ly),0) = V{¥loly), (6.246)

which is the square root of the overlap between |¢) and o. We can compare this
definition with that we introduced above, Eq. (6.237): for the present case, in
which p = |¢)(¢| and pe = o, it reduces to

f) = (@@)lolp@). (6.247)

Exercise 6.20 Another useful measure of the distance between two quantum
states p and o is the trace distance D(p, o), defined as

D(p,0) = L Tr|p—ol, (6.248)

where |p — o] = 1/(p — )T (p — o). Show that, if p and o are single-qubit states,
then D(p, o) is equal to half their distance on the Bloch ball.

6.5.11 * Entanglement and chaos

When a quantum system interacts with the environment, non-classical cor-
relations (entanglement) between the system and the environment are in
general established. On the other hand, when tracing over the environmen-
tal degrees of freedom, we expect that the entanglement between internal
degrees of freedom of the system is reduced or even destroyed. This expec-
tation is confirmed in models in which the environment is represented by a
many-body system (for instance, a multimode environment of oscillators in
the Caldeira—Leggett model or a spin bath). On the other hand, the follow-
ing question arises: could the many-body environment be substituted with
a closed deterministic system with a small number of degrees of freedom,
but chaotic? In other words, can the complexity of the environment arise
not from being many-body but from having chaotic dynamics? In this sec-
tion, we give a positive answer to this question and discuss a simple fully
deterministic model of chaotic environment (see Rossini et al., 2006).

Let us consider the interaction of a two-qubit system with a quantum
kicked rotator (the environment). The overall Hamiltonian H reads as
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follows:
H = HS+HR+HSRa
Hs = hlaz(cl) +h20';(82)

Hp = 3I” +kcosf Zé(T—jT), (6.249)
J
Hsp = e(agl) + 0'9)) cos 6 Zé(r —jT),
J

where Hg is the system Hamiltonian, Hr describes the kicked rotator (the
environment, also known as the reservoir) and Hgp the interaction. We
consider T = 27 /N, with N > 1; that is, the kicked rotator is in the
semiclassical regime. It is convenient to introduce a discrete time ¢t = 7/T,
measured in units of kicks. The unitary operator describing the evolution
of the overall system (qubits plus kicked rotator) in one kick is given by

U = exp{—i [k‘ + e(agl) + 022))} cos 0} exp {—%iTIQ]
x exp (—ido{)) exp (—id20(?), (6.250)

where we have defined §; = h1T and 02 = hoT'. Let us numerically simulate
the evolution of the overall system starting from a separable initial state
|Wo) = |¢F) @ |10).2? Note that, given an initially pure state |¥g), also the
state |U(t)) at time ¢ is pure since the overall evolution (6.250) is unitary.
The reduced density matrix ps(t) describing the two qubits at time ¢ is
then obtained after tracing the overall density matrix p(t) = |U(t))(¥(¢)|
over the kicked-rotator degree of freedom.

Let us evaluate the entanglement of formation E(t) of the state pg(t)
following Wootters (1998).3° First of all we compute the so-called con-
currence, defined as C' = max(\ — Ay — A3 — A\4,0), where the \; are
the square roots of the eigenvalues of the matrix R = pgpg, in decreas-
ing order. Here pg is the spin-flipped matrix of pg, which is defined by

29The results discussed in this section do not depend on the initial condition |tp),
provided the kicked rotator is in the chaotic regime.

30The entanglement of formation E is defined as the mean entanglement of the pure
states forming pg, minimized over all possible decompositions pg = Zj D) (sl

=M2mwy

We remind the reader that, according to Eq. (5.231), E(|¢;)) = S(|1;)(¥5])-
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ps = (o, ®0y)ps(oy ®0y); note that the complex conjugate is taken in the
computational basis {|00),]01),]10),|11)}). Once the concurrence has been
computed, entanglement is obtained as E = h((l +v1- C2)/2), where
h is the binary entropy function: h(zx) = —xlogsz — (1 — x)logy (1l — x).
Note that 0 < F < 1 and that the limiting cases £ = 1 and F = 0 cor-
respond to maximally entangled states and separable states, respectively.
We also compute the von Neumann entropy S(t) = — Tr[ps(t) log ps(t)] of
the reduced density matrix ps. This quantity measures the entanglement
between the two qubits and the kicked rotator.

In Fig. 6.40 we show the entanglement F(t) and the reduced von Neu-
mann entropy S(t), for the cases in which the kicked rotator is in the fully
chaotic (K = 100) or in the KAM-integrable regime (K = 0.5). The en-
tanglement F(t) decays in time and, in parallel, the reduced entropy S(t)
increases. This shows that the entanglement E(t) between the two qubits
drops due to the creation of entanglement (measured by S(t)) between the
two qubits and the environment, whose role in model (6.249) is played by
the kicked rotator. Note that there is a remarkable difference between the
integrable and the chaotic case. In particular, in the chaotic case S(t)
saturates (up to corrections O(1/N) due to the finite dimensionality of the
environment) to the maximum possible value S = 2 for a two-qubit system.

It is interesting to compare the results obtained from the above deter-
ministic model with those of a map derived for the two-qubit density matrix
within the framework of the Kraus representation formalism discussed in
Sec. 5.4. We model the effect of the interaction with the kicked rotator as
a phase kick (see Sec. 6.1.9) rotating both qubits through the same angle
about the z-axis of the Bloch sphere. This rotation is described by the
matrix

e—iecos@ 0 e—iecos@ 0
Brolf) = l 0 6i6C080] “ l 0 eiECOSO] ‘ (6.251)

That is to say, we assume that the angle 6 in the interaction Hamiltonian
of (6.249) is drawn from a random uniform distribution in [0,27]. This
is motivated by the fact that for the kicked-rotator model in the chaotic
regime with K > 1 the phases at consecutive kicks can be considered
as uncorrelated (the random-phase approximation). The evolution of the
reduced density matrix from p(¢) to p(t+1) is then obtained after averaging
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Fig. 6.40 Entanglement E (top) and von Neumann entropy S (bottom) as a function
of time ¢ (measured in number of kicks) for the model (6.249), for N = 213 §; = 1072,
82 = /261, ¢ = 1072, K = kT = 0.5 (full curve) and K = 100 (dashed curve). The

initial state of the kicked rotator is |¢o) = | — %) The circles show the results obtained
from the phase-damping model (6.252).

1x10°

over # and we end up with the map

2m
plt+1) = o= | a8 Ria(0) e 97" ¢80 (1) eides” ¢ido? BT ().
0
(6.252)
This map can be iterated, so that we obtain p(¢) and then E(t) and S(t).

The results derived from map (6.252) are shown in Fig. 6.40. It can be seen



434 Principles of Quantum Computation and Information. II

that they are in very good agreement with numerical data from Hamiltonian
(6.249) when the kicked rotator is in the chaotic regime. It is therefore
noteworthy that a fully deterministic dynamical model can reproduce the
main features of the dynamics of entanglement for a system in contact with
a phase-damping environment.3!

6.6 Decoherence and quantum computation

So far, we have discussed the effects of quantum noise on one- and two-qubit
systems. On the other hand, a quantum computer can be seen as a complex
system of many coupled qubits, whose ideal evolution is tailored in order
to implement a given quantum algorithm. In any realistic implementation,
errors due to imperfections in the quantum hardware or to the computer-
environment coupling unavoidably appear.

Let us consider a quantum algorithm that maps the input state [;)
of the quantum computer onto the output state |¢y) = Ult);), where the
unitary evolution operator U can be decomposed into a sequence on N,
elementary quantum gates:

U = Un,Un,-1--- UL (6.253)

We consider errors perturbing the ideal evolution |¢;) — |¢f). There is a
large variety of possible many-qubit decoherence models. For instance, each
qubit in a quantum register can decohere independently of the others or, in
the opposite limit, collective noise models are more appropriate. In the first
limiting case we say that each qubit interacts individually with a different
reservoir, while, in the latter case, there is a common reservoir. Moreover,
the noise may be memoryless (Markovian approximation) or correlated over
a time scale comparable or larger than the time between two consecutive
quantum gates. In the latter case, memory effects should be taken into
account.
We discuss the following classes of errors:

1) unitary memoryless errors (noisy gates): the operators U; change as
(i) Y Y Y9 P i g
follows:

U; — We(j) Uy, (6.254)

31The phase-damping map (6.251) can also be derived, in the Markovian limit, from
the Caldeira—Leggett model, see Palma et al. (1996).
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with W,(j) unitary and changing without any memory from gate to
gate. An example is provided by phase-shift gates (|0) — |0), |1) —
e®|1)), with random phase fluctuations, ¢ — ¢ + 6¢(j), with 6¢(j)
randomly drawn from the interval [—¢, €].

(ii) static imperfections: the error We(j) in (6.254) is the same for all j.
For instance, undesired phase rotations or qubit couplings can result
from static imperfections in the quantum computer hardware, such as
a coupling between two qubits that cannot be exactly switched off to
zero after the application of a quantum gate.

(iii) non-unitary decoherence: the unavoidable coupling of the quantum
computer to the external world in general causes a non-unitary evolu-
tion of the quantum computer itself.

The accuracy of quantum computation in the presence of the above
errors is typically measured by the fidelity

f@) = Trlpe(t)p(t)] = (W (B)]pe (D)9 (2)), (6.255)

where p(t) = [1(t))(1(t)| is the ideal pure state of the quantum computer
at time ¢ and p.(t) is the density matrix describing the state (in general, a
mixed state) of the perturbed quantum computer. Note that, as discussed
in Sec. 6.5.8, the fidelity is also an important quantity in the study of the
stability of quantum motion in the general theory of dynamical systems.
In the study of the stability of quantum computation under decoher-
ence and imperfection effects, a basic tool is the numerical simulation of
noisy many-qubit quantum algorithms. As a first example, we consider
the quantum simulation of the one-dimensional harmonic oscillator, whose
Hamiltonian reads H = Hy + V(z), with kinetic energy Hy = % and a
harmonic potential V(z) = 1w?(z — 20)?. In Fig. 6.41 we show the results
obtained for n = 6 qubits, evolving an initial (Gaussian) wave function
¥(x,0) by means of the Schrodinger equation. The propagation of the
wave function up to time ¢ is performed, as described in Sec. 3.15.1, by
means of the Trotter decomposition:
e, B) o [ kot tV o Y (@,0), (6.256)

where dt is a time much smaller than the time scales of interest for the
system and £/dt is the number of time steps used to evolve the system up
to time . We set A = 1. In Fig. 6.41 we consider w = 1, so that the
oscillation period is T = 27, and we consider dt = %T < T. The dy-
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namics is integrated up to time ¢ = 27T, and therefore the number of time
steps is t/dt = 40. As explained in Sec. 3.15.1, we evaluate the operators
Up(dt) = e~ wHodt and Uy (dt) = e~ #V4 in the basis in which they are
diagonal; that is, in the coordinate (x) and momentum (p) basis, respec-
tively. The quantum Fourier transform F' then allows to pass efficiently
(using $n(n — 1) controlled phase-shift and n Hadamard gates) from the z
to the p representation. Therefore, we have

W(a, ) ~ [U@d)]"p(x,0),  U(dt) = F~ Us(dt)FUy(dt). (6.257)

We investigate the motion inside the region = € [a,b], and discretize the
wave function by means of a grid of 2" equally spaced points in the interval
[a, b]. The 2™x2™ diagonal matrices Uy and Uy can be implemented without
ancillary qubits by means of 2" generalized controlled phase-shift gates,
similarly to Sec. 3.5 (see Fig. 3.16).32 In the case of Fig. 6.41, we have
n = 6 and therefore the number of quantum gates required to simulate the
evolution of the wave function in a time step dt is ng = 2" +n(n+1) = 170
(2"*! to implement Hy(dt) and Hy (dt) and n(n — 1) to implement F and
F~1), while N, = (t/dt)n, = 6.8 x 10° gates are needed to build the wave
function 1 (x, ) starting from ¢ (x,0).

Let us consider the effects of decoherence on the above-described quan-
tum simulation. For this purpose, we assume that each qubit interacts
independently with a different reservoir. A quantum operation is therefore
applied to each qubit after each quantum gate. As we saw in Sec. 6.1.1,
quantum noise acting on a single qubit is described by 12 parameters, asso-
ciated with rotations, deformations and displacements of the Bloch sphere.
To give a concrete example, in Fig. 6.41 we show the impact of the phase-flip
noise (corresponding to the deformation of the Bloch sphere into an ellip-
soid with z as symmetry axis), at noise strengths e = 0.01 and € = 0.02,
with sine = |y| in Eq. (6.31).3% Tt is interesting that the quantum simu-
lation in Fig. 6.41 is rather robust against significant noise strengths: for
€ = 0.01 we have quite a high value of fidelity (f = 0.71) after a number of
quantum gates as large as Ny, = 6.8 X 103.

It is very important to assess how errors scale with the input size n.

32This implementation is not efficient as it scales exponentially with the number of
qubits. Efficient implementations (polynomial in n) are possible for analytic potentials
V(z) but require, in general, the use of ancillary qubits. We also point out that usually
such efficient implementations outperform the above described inefficient implementation
only when the number of qubits n is quite large.

33Note that very similar results are obtained for the other single-qubit noise channels
introduced in Sec. 6.1.
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Fig. 6.41 Top left plot: |¢(z,t)|? for a harmonic oscillator with potential V(z) =
%wQ(x —x0)2, for w = 1, zg = 0. The interval —5 < z < 5 is discretized by means of a
grid of 64 points (vertical axis) and the total integration time ¢ = 2T = 47” is divided
in 40 time steps (horizontal axis). The initial condition is a Gaussian wave function
centred at x = g The top right and bottom left plots are the same as that top left
but with phase-flip noise of strength ¢ = 0.01 and 0.02, respectively. The full curves in
the bottom right plot show the fidelity of the quantum simulation at e = 0.01 (above)
and 0.02 (below), as a function of the number of time steps ny = % The dashed lines
correspond to the exponential fit f(n¢) o< exp(—Ce2ngny), with C(e = 0.01) ~ 0.49 and

C(e = 0.02) ~ 0.45.

A simple argument can be put forward (see Ekert et al., 2001) under the
assumption that each qubit decoheres separately. Let us assume that the
qubit-environment interaction is such as

010}z = [0)leo), D)0} — [1)ler) g, (6.258)
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where |0) ;; is the initial state and |eo) -, |e1) i two final states of the environ-
ment. These final states are not necessarily orthogonal; that is, in general
pleoler) g # 0. Therefore, the overall unitary evolution of an n-qubit quan-
tum register state |i) = |in—1)---|i1)]i0) together with the environment,
initially in the state [0---00) 5 =(0) 5 - - |0)|0) g, is given by

[1)|0---00) = [in—1---i1i0)|0)g -+ [0)pl0)
= lin—1---i1io)lei, ) lei ) plei) p = |i)|Ei) g (6.259)
Note that (6.259) follows from (6.258) when each qubit decoheres indepen-
dently of the others. Therefore, for a generic state of the quantum computer
we obtain

[$)]0-+-00); = > eli)|0-+-00); = > cili)| Ei) e (6.260)

Q 7
Thus, the off-diagonal elements p;; of the density operator describing the
n-qubit quantum register are reduced by a factor

| EilEj) gl = gl e, ) gl |plenlein) gl pleile) gl

= |glerleo) g7, (6.261)

where dp (7, j) is the Hamming distance between ¢ and j; that is, the num-
ber of binary digits in which ¢ and j differ. For instance, if i = 01010
and j = 11011, then dg(i,j) = 2 because i and j differ in the first and
last digits. Note that there are off-diagonal terms that drop by a factor
| z(e1]eo) p|™. Therefore, the error probability in a generic quantum compu-
tation is expected to grow exponentially with n or, equivalently, the fidelity
f o« exp(—An), where A is some constant. Of course, this naive expecta-
tion needs to be checked using more realistic theoretical models, in which
the dynamics of the quantum computer operating a given quantum algo-
rithm is taken into account. Moreover, collective-noise models also deserve
investigation. These issues will be discussed in Secs. 6.6.1 and 6.7.
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6.6.1 * Decoherence and quantum trajectories

In this section we shall describe the quantum-trajectory approach, a theory
developed mainly in the field of quantum optics to investigate physical phe-
nomena such as spontaneous emission, resonance fluorescence and Doppler
cooling, to name but a few. Here we discuss quantum trajectories as a pow-
erful technique for numerical simulation of quantum information processing
in a noisy environment.

As a consequence of the undesired environmental coupling, a quantum
processor becomes, in general, entangled with its environment. Therefore,
under the assumption that the environment is Markovian, the state is de-
scribed by a density matrix whose evolution is governed by a master equa-
tion. Solving this equation for a state of several qubits is a prohibitive task
in terms of memory cost. Indeed, for a system whose Hilbert space has
dimension IV, one has to store and evolve a density matrix of size N x N.
Quantum trajectories allow us instead of doing so, to store only a stochas-
tically evolving state vector of size N. By averaging over many runs we
obtain the same probabilities (within statistical errors) as those obtained
directly through the density matrix. Therefore, quantum trajectories are
the natural approach for simulating equations otherwise very hard to solve.

The GKSL master equation (6.99) can be written as

p = —%[H, Pl = 33 ALLL,.py + S LpLl, (6.262)
w w
where L, are the Lindblad operators (¢ € [1,..., M)], the number M de-
pending on the noise model), H is the system Hamiltonian and {,} de-
notes the anticommutator. The first two terms of this equation can be
regarded as the evolution generated by an effective non-Hermitian Hamil-
tonian, Heg = H + 1K, with K = —% Zu LLLw In fact, we see that

(4

(3
FUH o)~ 3 S ELL, 0} = — (Henp — pHly, (6.263)

14
which reduces to the usual evolution equation for the density matrix in the
case when H.g is Hermitian. The last term in (6.262) is responsible for
the so-called quantum jumps. In this context the Lindblad operators L,
are also called quantum-jump operators. If the initial density matrix is in a
pure state p(to) = |o(to)){d(to)|, after an infinitesimal time dt it evolves to
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the following statistical mixture:

)
p(to +dt) = p(to) — 7 [Heﬁp(to) - p(tO)Hgﬂ?} dt+Y_ L,p(to) L} dt
m

Q

i i
(I - ﬁHegdt) p(to) (I + ﬁHeﬁdt) + /Z L,p(to)L}dt

<1 - deﬂ> |#0) (ol + deu|¢u><¢u|v (6.264)

with the probabilities dp,, defined by

dp, = ($(to)|LLL,|e(to))dt, (6.265)
and the new states by

(I — £Hegdt) |$(to))

¢o) = m (6.266)
and
|¢ll> — LH|¢(’€0)>\/E _ LH|¢(tO)> (6.267)

N PTG

The quantum-jump picture turns out then to be clear: a jump occurs
and the system is prepared in the state |¢,) with probability dp,. With
probability 1—>" u dp,, there are no jumps and the system evolves according
to the effective Hamiltonian Heg (normalization is also included in this case
because the evolution is given by a non-unitary operator).

In order to simulate the master equation one may employ a numerical
method usually known as the Monte Carlo wave function approach. We
start from a pure state |¢(f9)) and at intervals dt, much smaller than the
time scales relevant for the evolution of the density matrix, we perform
the following evaluation. We choose a random number € from a uniform
distribution in the unit interval [0,1]. If € < dp, where dp = Eu dp,.,
the system jumps to one of the states |¢,) (to |¢1) if 0 < e < dps, to
|p2) if dp1 < € < dp1 + dps, and so on). On the other hand, if € > dp,
evolution with the non-Hermitian Hamiltonian Heg takes place, ending up
in the state |¢o). In both circumstances we renormalize the state. We
repeat this process as many times as ngeps = ¢/dt where ¢ is the entire
time elapsed during the evolution. Each realization provides a different
quantum trajectory and a particular set of them (given a choice of the
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Lindblad operators) is an “unravelling” of the master equation.?* It is easy
to see that if we average over different runs, we recover the probabilities
obtained with the density operator. In fact, given an operator A, we can
write the mean value (A), = Tr[Ap(t)] as the average over N trajectories:

(4) = lim NZ 6:(1)|Al9i(1))- (6.268)

The advantage of using the quantum-trajectory method is clear since
we need to store a vector of length N (/N being the dimension of the Hilbert
space) rather than an N x N density matrix. Moreover, there is also an
advantage in computation time with respect to direct density-matrix cal-
culations. It is indeed generally found that a reasonably small number of
trajectories (M ~ 100 — 500) is needed in order to obtain a satisfactory
statistical convergence, so that there is an advantage in computer time
provided N > N3

We can say that a quantum trajectory represents a single member of an
ensemble whose density operator satisfies the corresponding master equa-
tion (6.262). This picture can be formalized by means of the stochastic
Schrédinger equation

[do) = —iH]|¢)d —QZ(L*L (GILLL,10) ) 16)dt

L,

_|_ -
P (G|LLLyu|d)

— 1| |8)dN,., (6.269)

where the stochastic differential variables d/V,, are statistically independent
and represent measurement outcomes (for instance, in indirect measure-
ment models the environment is measured, see the example from quantum
optics below). Their ensemble average is given by M [dN,| = <¢|LLLH|¢>dt.
The probability that the variable dN, is equal to 1 during a given time step

34Different unravellings are possible since there is always freedom in the choice of the
Lindblad operators that induce a given temporal evolution of the density matrix p(t) (see,
e.g., Brun, 2002). This corresponds to the freedom in the operator-sum representation
discussed in Sec. 5.4.

35The updating of a density matrix and of a wave vector, performed after each time
step dt, require O(N3) and O(N?) operations, respectively. In the first case, we must
multiply N X N matrices, in the latter N X N matrices by a vector of size N. Hence, the
cost in computer time for the quantum-trajectory approach is oc A’'N2, to be compared
with the cost o N3 for the density-matrix calculations.
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dt is <¢|LLLM|¢)dt. Therefore, most of the time the variables dN,, are 0
and as a consequence the system evolves continuously by means of the non-
Hermitian effective Hamiltonian Heg. However, when a variable dNV, is
equal to 1, the corresponding term in Eq. (6.269) is the most significant.
In these cases a quantum jump occurs. Therefore, Eq. (6.269) is a stochas-
tic non-linear differential equation, where the stochasticity is due to the
measurement and non-linearity appears as a consequence of the renormal-
ization of the state vector after each measurement process. We point out
that, in contrast to the master equation (6.262) for the density operator,
Eq. (6.269) represents the evolution of an individual quantum system, as
exemplified by a single run of a laboratory experiment.

There is a close connection between the quantum-jump picture and the
Kraus-operator formalism. To see this, we write the solution to the master
equation (6.262) as a completely positive map:

plto +dt) = S(to;to + dt)p Z E,(dt)p(t)EJ (dt), (6.270)

where, for =0, we have Ey = I — iHcgdt/h and, for >0, E,, = LH\/%
(see Sec. 6.2.2), satisfying Zﬁio E);E“ = I to first order in dt. The action
of the superoperator S in (6.270) can be interpreted as p being randomly re-
placed by EHpE]; / Tr(EupE);), with probability Tr(EHpEZ). Equivalently,
the set {E,} defines a Positive Operator—Valued Measurement (POVM),
with POVM elements F),, = E | B, satisfying Z F,, = I. The process
outlined is equivalent to performlng a continuous (Weak) measurement on
the system, which can be seen as an indirect measurement if the environ-
ment is actually measured.

A simple example will help us clarify the general quantum-trajectory
theory sketched above. We consider the simplest, zero-temperature instance
of the quantum optical master equation (6.100):

p= —ﬁ[H -2 5 (0-04p+po_oy) +y04p0—, (6.271)

where the Hamiltonian H = %ﬁwoaz describes the free evolution of a two-
level atom3® and v is the atom-field coupling constant. In this case there
is a single Lindblad operator L; = /7o, and a jump is a transition from

36The exact expression of the Hamiltonian H is not important here and one could
equally well consider the same example for a generic Hamiltonian H, provided the inter-
action picture is considered (see, e.g., Scully and Zubairy, 1997).
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the excited state |1) to the ground state |0) of the atom. Starting from a
pure initial state |¢(to)) = «|0) 4+ 5|1) and evolving it for an infinitesimal
time dt, the probability of a jump in a time dt is given by

dp = (6(to)| L} L1|@(to))dt = v(d(to)|o—o|d(to))dt = pe(to)dt,
(6.272)
where p.(to) = |3|? is the population of the excited state |1) at time tq. If
a jump occurs, the new state of the atom is

o) = Ll _ VT4 (al0) + BVt B
YT Lae(to)) | Vdp 18]

In this case, the transition |1) — |0) takes place and the emitted photon
is detected. As a consequence, the atomic state vector collapses onto the

0).  (6.273)

ground state |0). If instead there are no jumps, the system evolution is
governed by the non-Hermitian effective Hamiltonian Heg = H —igLILl =
H - i%’ya_m_, so that the state of the atom at time to + dt is

(I — #Hegedt) |6(t0))
1—dp
_ (1—idt) of0) + (1 +i%5dt — 3) I (6.274)
V1—=7|B]2dt

Note that the normalization factor 1/4/T —dp is due to the fact that, if
no counts are registered by the photodetector, then we consider it more
probable that the system is unexcited. To illustrate the fact that the nor-
malization factor leads to the correct physical result, let us consider the
evolution without jumps in a finite time interval, from ¢y to tg+¢, and then
let t — oco. If we first write the unnormalized state vector as

o) =

607 (1)) = oD (t)]0) + B (t)[1), (6.275)

we see that the coefficients a(*) and 3(*) obey the simple equations of
motion

a™(t) = —i%a(”(t), Bty = {z% - %} BW@),  (6.276)

which imply
o™ (to + ) = exp [—i % (t— to)} o (ty),

Bt +1) = exp| (192 = 3 ) (¢ —t0)| B (t0).

(6.277)
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Therefore, after normalization, the evolution of the state vector conditional
on there being no photons detected is

aexp[—i%(t — to)] [0) + ﬁexp[( <o %) (t— to)] |1>

o) = VIaP + 1B epl 1 — o)

(6.278)
We stress that as t — 400 the state |¢o(t)) — |0) (up to an overall phase
factor). That is, if after some long time we have never seen a count, then
we conclude that we have been in the ground state |0) from the beginning.
Let us now demonstrate the ability of the quantum-trajectory approach
to model noisy quantum-information protocols with a large number of
qubits. A first issue is the generalization of the single-qubit quantum-noise
channels discussed at the beginning of this chapter (amplitude damping,
phase shift, ...) to many qubits. Of course, many different generalizations
are possible. In what follows we shall take two different viewpoints, illus-
trated in the example of the amplitude-damping channel. In the first case
(generalized amplitude-damping channel) we assume that a single damp-
ing probability describes the action of the environment, irrespective of the
internal many-body state of the system. In the second approach (simple
amplitude-damping channel), we assume that each qubit has its own inter-
action with the environment, independently of the other qubits. This makes
the damping probability grow with the number of qubits that can perform
the transition (the jump, in the quantum-trajectory language) |1) — |0).
Both models assume that only one qubit of the system can decay at a time.
In the generalized amplitude-damping channel we assume that an n-
qubit state |in—1...90) (4 = 0,1, with 0 < I < n — 1) decays during
the interval d¢ with a probability dp = T'dt/h, where I" is the system—
environment coupling constant. The possible states of the system after the
damping process are those in which the transition [1) — |0) has occurred
in one of the qubits, the transition probability being the same for all the
qubits. For example, the (pure) states of the computational basis for a
two-qubit system are transformed, after a time dt, as follows:

a1 - (1- @)|11><11| + —(|o1><o1| 1 10y(10]),
10y (10] — (1= =) 10y {10]+ L 00) {00,

(6.279)
o1 — (125 jonyon] + % 100)(00,

100)(00] — |00)(00].
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Note that the final states are in general statistical mixtures.
The evolution of the same initial states is different for the simple
amplitude-damping model. In this case we have

a1 - (1- ﬁ)mxm + —(|01><01| 4 110)(10]),
10)10] — (1= =) 10y 10] + 2 j00) 00),

o (6.280)
o101 — (1= =)oy 01| + 5 jo0) oo,

100)(00] — [00)(00].

Note that in this model the decay probability for a state of the computa-
tional basis is proportional to the number of qubits in the |1) state.

Let us illustrate the application of the quantum-trajectory approach to
both models. We study the fidelity of quantum teleportation through a
noisy chain of qubits. A schematic drawing of this quantum protocol is
shown in Fig. 6.42. We consider a chain of n qubits, and assume that Alice
can access the qubits located at one end of the chain, Bob those at the
other end. Initially Alice owns an EPR pair (for instance, we take the Bell
state |p1) = %HOO) + |11)]), while the remaining n — 2 qubits are in a
pure state. Thus, the global initial state of the chain is given by

> Ciisline..i2) ® =5 (100) +[11)), (6.281)

Tn—1,-.0y02

where i, = 0,1 denotes the up or down state of qubit k. In order to
deliver one of the qubits of the EPR pair to Bob, we implement a protocol
consisting of n — 2 SWAP gates that exchange the states of pairs of qubits:

D0 ey ia00) + i ia D) —

T —1,e0y02

o ,
> 2 (i gL 0020) + Jinoq .. Ligl)) —
In—1,---s02 \/2

— c"”:;#’“(|0¢n,1...i20>+|1z‘n,1...¢21>). (6.282)

Tn—1,---502

After this, Alice and Bob share an EPR pair, and therefore an unknown
state of a qubit (|¢)) = «|0) + 8|1)) can be transferred from Alice to Bob
by means of the standard teleportation protocol described in Sec. 4.5. Here
we take random coefficients ¢;, ... i,; that is, they have amplitudes of
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the order of 1/v/2™=2 (to assure wave function normalization) and random
phases. This ergodic hypothesis models the transmission of a qubit through
a chaotic quantum channel. We assume that the quantum protocol is im-
plemented by a sequence of ideally instantaneous and perfect SWAP gates,
separated by a time interval 7, during which the quantum noise introduces
erTors.

System
Y v v,

ol [ THIT LT e

87 6543210

Environment

Fig. 6.42 A schematic drawing of the teleportation procedure studied in the text. Alice
sends one of the qubits of a Bell state in her possession to Bob. Meanwhile dissipation
is induced by the environment. In the figure, there is a chain of n = 9 qubits and the
third of the n — 2 SWAP gates required by this quantum protocol has been applied. The
qubit [1) is to be teleported.

In the quantum-trajectory method, the fidelity of the teleportation pro-
tocol is computed as

N
f= Z (Wl(pp)ilv), (6.283)

where (pp); is the reduced density matrix of the teleported qubit (owned
by Bob), obtained from the wave vector of the trajectory ¢ at the end of
the quantum protocol. The effect of the two amplitude-damping channels
described above on the fidelity of the teleportation protocol is illustrated in
Fig. 6.43, where we show the results of numerical simulations for the special
case in which the state to be teleported is |¢) = ﬁ (10) +1)). In this case,
in the limit of infinite chain (n — o0) or of large damping rate, the density
matrix pp describing the state of Bob’s qubit becomes pg = |0)(0|. Thus,
the asymptotic value of fidelity is given by fo = % and we plot the values
of f = f— fw, for the generalized and simple amplitude-damping channels.
For both cases we have checked the accuracy of the quantum trajectory
simulations by reproducing the results with direct density matrix calcula-



Decoherence 447

tions (possible only up to approximately n = 10 qubits). For the simple
amplitude-damping channel the fidelity decays exponentially, in agreement
with the theoretical formula

f =3+ 3exp(—vk), (6.284)

where v = T't/h is the dimensionless damping rate and k =¢/7 =n — 2
measures the time in units of quantum (SWAP) gates. To derive this theo-
retical formula, we observe that this quantum-noise model does not generate
entanglement between the two qubits of the Bell pair and the other qubits of
the chain. Therefore, it is sufficient to study the evolution of the Bell state
|¢T) (¢ | under the amplitude-damping noise model to obtain Eq. (6.284).
In contrast, the generalized amplitude-damping model entangles these two
qubits with the rest of the chain. In this case, it can be seen from Fig. 6.43
that the fidelity decay is slower and not exponential. The most important
point here is that the quantum-trajectory approach allows one to simulate
a much larger number of qubits than accessible by direct solution of the
master equation, which, due to memory restrictions in a classical computer,
is only possible for up to n =~ 10 qubits.

0

10

Fig. 6.43 The fidelity f = f — foo (foo = %) for the teleportation of the state
[¥) = ﬁ(m) + |1)) as a function of the dimensionless damping rate v = I't/h, for
the amplitude-damping model. The circles and squares are the results of the quantum-
trajectory calculations for chains with n = 10 and n = 20 qubits, respectively; the
triangles give the results of the density matrix calculations at n = 10; the straight lines
correspond to the theoretical result f = % + %exp[—w(n — 2)]. Inset: the same but for
the generalized amplitude-damping channel. The figure is taken from Carlo et al. (2004).
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Besides the simple quantum teleportation protocol, the quantum-
trajectory method can also be used for the simulation of complex quantum
computations. As an example, let us consider the effect of a noisy envi-
ronment on the quantum algorithm for the n-qubit quantum baker’s map
(described in Sec. 3.15.2). More precisely, we consider the phase-flip chan-
nel, assuming that the noise strength is the same for each qubit. We take
an initial state |¢)p) with amplitudes of the order of 1/4/2" and random
phases. The forward evolution of the baker’s map is performed up to k
map steps, followed by the k-step backward evolution (the forward evolu-
tion in one map step is governed by the unitary transformation T defined in
Eq. (3.194), the backward evolution by 7). Owing to quantum noise, the
initial state |1o) is not exactly recovered and the final state of the system
is described by a density matrix py. The quantum-computation fidelity is
given by f = (Yo|ps|tbo). It can be seen in Fig. 6.44 that the fidelity decay
induced by phase-flip noise is in agreement with the formula

f = exp(—nyN,) = exp(—2yn’k), (6.285)

where v = I'r /A is the dimensionless noise strength (again, 7 denotes the
time interval between elementary quantum gates) and N, = 2n%k is the
total number of elementary quantum gates required to implement the &
steps forward evolution of the baker’s map, followed by k step backward.?”
From Eq. (6.285) we can determine the time scale up to which a reliable
quantum computation of the baker’s map evolution in the presence of the
phase-flip noise channel is possible even without quantum error correction.
The time scale ky at which f drops below some constant A (for instance,
A =0.9) is given by

- InA
29n3’

ky = (6.286)
The total number of gates that can be implemented up to this time scale
is given by

InA

Ny = 202k = —
(Ng) s n’ky -

(6.287)
Thus, the number of gates (V) that can be reliably implemented with-
out quantum error correction drops only polynomially with the number of
qubits: (Ng)f o< 1/ng.

37The analytic derivation of formula (6.285) is provided in Carlo et al. (2004).
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Fig. 6.44 A semilogarithmic plot of the fidelity as a function of the dimensionless decay
rate -y, for the baker’s map after one map step in the presence of the phase-flip channel.
Circles and squares correspond to quantum-trajectory simulations for n = 10 and n = 20
qubits, respectively. Triangles give the results obtained by direct computation of the
density matrix evolution at n = 10. Solid lines stand for f(v) = exp(—2yn?3). The figure
is taken from Carlo et al. (2004).

6.7 * Quantum computation and quantum chaos

The aim of this section is to discuss the limits to quantum computation
due to chaos effects. Let us first point out that, even when a quantum
processor is ideally isolated from the environment, i.e., in situations where
the decoherence time of the processor is very large compared to the com-
putational time scales, the operability of the quantum computer is not yet
guaranteed. Indeed, the presence of device imperfections also hinders the
implementation of any quantum computation. A quantum computer can
be seen as a complex many-body (-qubit) system, in which interaction be-
tween the qubits composing the quantum registers is needed to produce the
multipartite (many-qubit) entanglement necessary in efficient quantum al-
gorithms. Moreover, device imperfections such as small inaccuracies in the
coupling constants induce errors. Unwanted mutual interactions between
qubits can be a source of essential errors in practical implementations of
quantum computation. For instance, in the ion-trap quantum processors
magnetic dipole—dipole interactions couple qubits. In NMR quantum com-
puting, undesired residual interactions survive after imperfect spin echoes.

In this section we discuss the impact of static hardware imperfections
on the stability of quantum algorithms. For this purpose, it is convenient
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to model the quantum computer hardware as a qubit lattice described by
the Hamiltonian

H, = Z(AO +6)of + Y Jijofor, (6.288)

i <%,7>
where of, 07,07 are the Pauli matrices for qubit i, and Ag is the average
level spacing for one qubit. The second sum in (6.288) runs over nearest-
neighbour qubit pairs and 6;, J;; are randomly and uniformly distributed
in the intervals [—0/2,6/2] and [—J, J], respectively.®

In order to study the limits to quantum computation due to hardware
imperfections, we investigate the temporal evolution of the quantum com-
puter wave function in the presence of the following many-body Hamilto-
nian:

H(7t) = Hg+ Hy(7), (6.289)
where

Hy(r) =Y 6(r — kry)hi. (6.290)
k

Here hyj realizes the k-th elementary gate of a sequence prescribed to im-
plement a given quantum algorithm. The algorithm is therefore imple-
mented by a sequence of (ideally) instantaneous and perfect one- and two-
qubit gates, separated by a time interval 74, during which the Hamiltonian
(6.288) gives undesired phase rotations and qubit couplings. We assume
that the phase accumulation given by A is eliminated by standard spin-
echo techniques (see Sec. 8.1.4). In this case, the remaining terms in the
static Hamiltonian (6.288) can be seen as residual terms after imperfect
spin echoes.

To provide a concrete example, we assume in the rest of this section
that the sequence {h;} implements the quantum algorithm simulating the
quantum sawtooth map

{ I =T1+k(0-m), (6.201)

0 =6+TI.

The dynamics of this map is described in detail in Sec. 3.15.3.

38The transition to quantum chaos for Hamiltonian (6.288) is discussed in Sec. 6.5.7.
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6.7.1 * Quantum versus classical errors

It is interesting to compare the effects of quantum errors, described, for
instance, by the static imperfections model (6.288), with the action of the
round-off errors typical of classical computation. For this purpose, both
the quantum Husimi functions and the classical density plots are shown in
Fig. 6.45. These pictures are obtained for K = kT = —0.1, so that the
motion is stable (maximum Lyapunov exponent A = 0), the phase space
has a complex structure of elliptic islands down to smaller and smaller
scales and anomalous diffusion in the rescaled momentum variable J = T'1
is observed: ((AJ)?) o< t* with a = 0.57. We consider —7 < J < m; the
classical limit is obtained by increasing the number of qubits n = log N
(and the number of levels N = 2™), with T = 27 /N (k = K/T, J =TI,
—N/2 < I < N/2). As initial state at time ¢t = 0 we consider a momentum
eigenstate, |¢(0)) = |Ip), with Iy = [0.38 N]. The dynamics of the sawtooth
map reveals the complexity of the phase-space structure, as shown by the
Husimi functions of Fig. 6.45, taken after 1000 map iterations. We note
that n = 6 qubits are sufficient to observe the quantum localization of the
anomalous diffusive propagation through hierarchical integrable islands. At
n = 9 one can see the appearance of integrable islands and at n = 16 the
quantum Husimi function explores the complex hierarchical structure of the
classical phase space down to small scales. The effect of static imperfec-
tions, modelled by Eq. (6.288), on the operability of the quantum computer
is shown in Fig. 6.45 (right column). The main features of the wave packet
dynamics remain evident even in the presence of significant imperfections,
characterized by the dimensionless strength ¢ = 57'9. The main manifes-
tation of imperfections is the injection of quantum probability inside inte-
grable islands. This creates characteristic concentric ellipses, which follow
classical periodic orbits moving inside integrable islands. These structures
become more and more pronounced with increasing n. Thus, quantum
errors strongly affect quantum tunnelling inside integrable islands, which
in a pure system drops exponentially (proportional to exp(—cN), with ¢
constant).

It is interesting to stress that the effect of quantum errors is quali-
tatively different from classical round-off errors, which produce only slow
diffusive spreading inside integrable islands (see Fig. 6.45, bottom right).
This difference is related to the fact that spin flips in quantum computa-
tion can make direct transfer of probability over large distances in phase
space; that is, quantum errors are mon-local in phase space. This is a
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consequence of the binary encoding of the discretized angle and momen-
tum variables. For instance, we represent the momentum eigenstates |I)
(=N/2 < I < N/2) in the computational basis as |a,—1 - a1ag), where
a; € {0,1} and I = —N/2+ E 0 aj23 If we take, say, n = 6 qubits
(N = 26 = 64), the state |OOOOOO) corresponds to |I = —32) (J = —m),
|000001) to |[I = —31) (J = —7 + 27(1/2%)), and so on until [111111),
corresponding to |I = 31) (J = —7 + 27(63/2°%)). Let us consider the
simplest quantum error, the bit flip: if we flip the least significant qubit
(g = 0 < 1), we exchange |I) with |I 4+ 1), while, if we flip the most
significant qubit (a,—1 = 0 < 1), we exchange |I) with |I 4 32). It is clear
that this latter error transfers probability very far away in phase space.

6.7.2 * Static imperfections versus noisy gates

It is interesting to compare the effect of static imperfections generated by
the Hamiltonian (6.288) with the case when the static imperfections are
absent but the computer operates with noisy gates. To model the noisy
gates we set J = 0 and §; fluctuating randomly and independently from
one gate to another in the interval [—4/2, /2] (similar results are obtained

for J # 0).
A quantitative comparison can be performed by computing the fidelity
of quantum computation, defined by f(t) = } Ye(t) o (t ))|2, where 1) (t)

is the actual quantum wave function in the presence of imperfections (or
noisy gates) and 1y(t) is the quantum state for a perfect computation. We
show in Fig. 6.46 the fidelity f(¢) as a function of time, for different values
of the static imperfection strength. There is a clear change of behaviour in
the fidelity decay. At short times the fidelity drops exponentially (f(t) ~
exp(—At), with A o €2), then, at time £ ~ 250, the decay quite abruptly
becomes Gaussian (f(t) ~ exp(—Bt?), with B  €2). Moreover, it can be
shown that the time # does not depend on the static imperfection strength.
It turns out that £ ~ ¢z, where t;7 = N is the Heisenberg time, given by
the inverse mean level spacing. A qualitative reason for this behaviour is
the following. Before ¢ty the system does not resolve the discreteness of
the spectrum. Therefore, the density of states can be treated as continuous
and the Fermi golden rule can be applied. In the case of noisy gates the
fidelity decay is exponential at all times. This corresponds to the Fermi
golden rule regime, where at each gate operation a probability of order
2 is transferred from the ideal state to other states. Since there are no
correlations between consecutive noisy gates, the population of the ideal



Decoherence 453

Fig. 6.45 The Husimi function for the sawtooth map in momentum—angle variables
(J,0), with —7 < J < m (vertical axis) and 0 < § < 27 (horizontal axis), for K = —0.1,
T =27/2™, In = Jo/T = [0.38 x 2"], averaged over the interval 950 < ¢ < 1000. From
top to bottom: n = 6, 9, 16 and classical density plot, obtained from an ensemble of 108
trajectories, with initial momentum Jy = 0.38 X 27 and random angles. Left- and right-
hand columns show the case without and with imperfections: in the quantum case the
imperfection strength ¢ = §7g = 2 x 1073 (n =6), 6 x 107 (n = 9), 10~ (n = 16), for
J = 0 (similar results are obtained for J = §); in the classical case round-off errors have
amplitude 1073, In the Husimi functions we choose the ratio of the momentum-angle
uncertainties s = Ap/Af =1 (ApA# = T/2). Black corresponds to the minimum of the
probability distribution and white to the maximum. The figure is taken from Benenti et
al. (2001b).
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noiseless state decays exponentially. We can write f(t) ~ exp(—Ce2N,),
where Ny, = ng4t is the total number of gates required to evolve t steps
of the sawtooth map, n, = 3n? + n being the number of gates per map
iteration, and C' is a constant, which can be determined numerically. The
fidelity time scale for noisy gates is therefore given by t;n) x 1/(e?ny).
The dependence on € is qualitatively different compared to the Gaussian
decay in the static imperfection case at small e, where tgf) o« 1/€ (in this
latter case the fidelity decay essentially takes place after the Heisenberg
time). The fidelity time scales t;n) and tgf) (obtained from the condition
f(ty) = ¢ =0.9) are shown in Fig. 6.47 as a function of . We stress that
the static imperfections give shorter time scales ¢y and are therefore more
dangerous for quantum computation.

o
2]
T
L

b 200 400 t 600 800 1000

Fig. 6.46 Fidelity decay for n = 11 qubits, J = 0 and, from top to bottom, € = 57'9 =
5x 1075, 1074, 2 x 104, 10~3 (solid lines). Dashed and dot-dashed lines show the
fitting functions exp(—At) and exp(—Bt?), with A = 1.2x 1072 and B =~ 5 x 104, The
initial condition is a Gaussian wave packet.

The results for static imperfections in Figs. 6.46 and 6.47 can be ex-
plained following the random-matrix theory approach developed in Frahm
et al. (2004). Assuming that the unitary Floquet operator U corresponding
to the quantum evolution in one map step can be modelled by a random
matrix, one obtains from a random-matrix theory calculation that

t t2

(6.292)

where t. ~ 1/(e?nn2) characterizes the inverse effective strength of the
g g
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Fig. 6.47 Fidelity time scale t;y as a function of ¢, for n = 9, in the case of static

imperfections [J = § (circles) and J = 0 (squares)] and noisy gates at J = 0 (diamonds).
The straight lines have slopes —1 and —2. The figure is taken from Benenti et al. (2001b).

perturbation and ty = 2™. Relation (6.292) is valid as long as € and ¢ are
sufficiently small so that the fidelity remains close to unity. The time scale ¢,
governs the exponential fidelity decay at times smaller than the Heisenberg
time tgy. In the random-matrix theory approach we can distinguish two

regimes:

(i)

perturbative regime: for € < €. = 1/(\/@7@); that is, for t. > tg,
the fidelity decay is dominated by the second term in the right-hand
side of Eq. (6.292). The decay essentially takes place only after the
Heisenberg time and is Gaussian, f(t) ~ exp(—t2/t.ty). The fidelity
time scale is therefore

A /2?’L
ey/nng

and the total number of gates that can be performed within this time
is

ty ~ ity ~ (6.293)

(Ng)f ~ 2/5_;

(6.294)

quantum chaos regime: for € > €. (t. < ty) the fidelity decay is
dominated by the t/t. term in (6.292), so that it is exponential, f(¢) ~
exp(—t/t.), and occurs before the Heisenberg time. The fidelity time
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scale and the number of gates performed within this time are given by

1

1
Ng)g ~ . 6.296
(No)s ~ o (6.296)

Note that the threshold e, is the chaos border, above which static imper-
fections mix the eigenstates of the Floquet operator U (see Benenti et al.,
2002). Since this threshold drops exponentially with the number of qubits,
the Gaussian regime may be dominant only for a small number of qubits.??

It is interesting to mention an application of the above results to improve
the fidelity of quantum computation. Since random imperfections changing
from gate to gate always lead to an exponential decay of the fidelity, it is
tempting to try to randomize the static imperfections to slow down the
fidelity decay from Gaussian to exponential. This idea can be formalized
if one observes that the fidelity may be expressed in terms of a correlation
function of the perturbation. Let us briefly illustrate this point. We con-
sider a quantum algorithm that performs a given unitary transformation U
by means of a sequence of T' quantum gates:

U=U0T)UuT-1)---U(1). (6.297)
We denote the perturbed evolution by U,, where
U = e VO () e VIV (T —1)--- VD U1).  (6.298)

Here € denotes the strength of the perturbation, which is generated by the
Hermitian operator V' (¢). The fidelity of the quantum algorithm can be
written as

2
1

(1) = |5 T [Uc(T,0)U(T,0)]| , (6.299)

where the trace averages the result over a complete set of initial states (for

instance, quantum register states) and U(¢,¢') = U)U(t—1)---U(t' + 1)

is the evolution operator from t' to t > ¢/, U.(t,t’) is defined in the same

manner for the perturbed evolution. Defining the Heisenberg evolution of

39In contrast, for a quantum computer at rest (without quantum gates being applied)
the chaos border decreases only polynomially with the number of qubits (see Sec. 6.5.7).
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the perturbation as V (t,t') = UT(t,t)V (t)U(t,t') we obtain

2
F(T) = ‘% T\r(eieV(l,O)eieV(Q,O) N _eieV(T,O))‘ . (6.300)

As we are interested in the case in which the fidelity is close to unity, we
can expand it up to the second order in € (see Prosen and Znidaric, 2002):

T
f0) = 1= > Ctt), (6.301)
where
Clt ) = %Tr [V (#,0) V(t,0)] (6.302)

is a two-point temporal correlation of the perturbation. It is therefore clear
that a quantum algorithm is more stable when the correlation time of the
perturbation is smaller. This can be performed by devising a “less regu-
lar” sequence of gates that realize the transformation U required by the
algorithm (see Prosen and Znidari¢, 2001). For instance, using the Pauli
operators one can change the computational basis repeatedly and randomly
during a quantum computation. The effectiveness of this method in ran-
domizing static imperfections, thus improving the fidelity of the quantum
computation, was demonstrated in Kern et al. (2005), see also Viola and
Knill (2005).

6.8 A guide to the bibliography

Reviews on decoherence are to be found in Zurek (2003) and Kiefer and
Joos (1998) while a simple introduction can be found in Zurek (1991).
There are several studies of the effect of decoherence and imperfections on
the stability of quantum computation: for instance, Palma et al. (1996),
Miquel et al. (1996), Georgeot and Shepelyansky (2000), Benenti et al.
(2001b), Strini (2002), Carvalho et al. (2004) and Facchi et al. (2005).

A discussion of the master equation from the perspective of quantum
optics can be found in Gardiner and Zoller (2000). References on dissipative
quantum systems are Caldeira and Leggett (1983), Weiss (1999), Dittrich
et al. (1998) and Prokof’ev and Stamp (2000).

Classical chaotic motion in non-linear dynamical systems is treated in
several books, see for instance Lichtenberg and Lieberman (1992). General
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references on quantum chaos are Casati and Chirikov (1995), Haake (2000)
and Stockmann (1999). Random matrix theories in quantum physics are
discussed in Bohigas (1991) and Guhr et al. (1998). A review on the quan-
tum Loschmidt echo is provided by Gorin et al. (2006). Quantum chaos
theory in many-body systems is discussed in Shepelyansky (2001). Quan-
tum chaos experiments with hydrogen atoms in a microwave field and with
cold ions in optical lattices are reviewed in Koch and van Leeuwen (1995)
and Raizen et al. (2000), respectively.

The quantum-trajectory approach to quantum noise is discussed in
Carmichael (1993), Gardiner and Zoller (2000), Scully and Zubairy (1997)
and Plenio and Knight (1998). This approach can be generalized to treat
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Chapter 7

Quantum Error Correction

In this chapter we discuss how to protect quantum information from errors.
The use of error-correcting codes to fight the effect of noise is a well devel-
oped technique in classical information processing. The key ingredient to
protect against errors is redundancy.

To grasp this point, it is useful to consider the following example. Al-
ice wishes to send Bob a classical bit through a classical communication
channel; that is, a channel described by the laws of classical mechanics.
The effect of noise in the channel is to flip the bit (0 — 1 or 1 — 0) with
probability € (0 < e < 1), while the bit is transmitted without error with
probability 1 — e. The simplest manner to protect the bit is to send three
copies of it: Alice sends 000 instead of just 0, say, or 111 instead of 1.
Bob receives the three bits and applies majority voting: if, for instance, he
receives 010, he assumes that, most probably, there was a single error af-
fecting the second bit (0 — 1). He therefore concludes that the transmitted
bit of information was 0.

We should point out that the underlying hypothesis is that the noisy
channel is memoryless; namely, noise acts independently on each bit.
Therefore, if Alice sends 000, Bob will receive 000 with probability (1 —¢)3.
The error-correcting code succeeds if there is a single error; that is, when
Bob receives 100, 010, or 001. Each of these messages is received with
probability €(1 — €)2. The code fails if two or more bits have been flipped.
This is the case if Bob receives 011, 101, 110 (with probability €?(1—¢)), or
111 (with probability €?). Therefore, the failure probability of the code is
€c = 36%(1 —€) + €3 = 3¢? — 2¢3. For just a single bit, the error probability
was €. Hence, the code improves the probability of successful transmission
if e < € that is, if € < 1/2. The improvement is greater for e smaller
since the error probability is reduced by a factor =~ 3e. For instance, for

459
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e=10"1, e, = 2.8 x 1072, while, for e = 1072, ¢, = 2.98 x 10~%.

The application of the same redundancy principle to quantum informa-
tion encounters difficulties directly related to the basic principles of quan-
tum mechanics:

1. Owing to the no-cloning theorem (discussed in Sec. 4.2), it is impossible
to make copies of an unknown quantum state. Therefore, we cannot
mimic the above-described classical code by sending [1)|¢))|1)) to protect
an unknown quantum state |1)).

2. In order to operate classical error correction, we observe (measure) the
output from the noisy channel. In quantum mechanics, we know that, in
general, measurements disturb the quantum state under investigation.
For instance, if we receive the state [¢)) = «|0) + 8|1) and measure its
polarization along the z-axis, the state will collapse onto |0) (with prob-
ability |a|?) or |1) (with probability |3|?). In either case, the coherent
superposition of the states |0) and |1) will be destroyed.

3. While the only possible classical error affecting a single bit is the bit flip
(0 — 1 and 1 — 0), the class of possible quantum errors is much richer.
For instance, we can have the phase-flip error: «|0)+5|1) — «|0) —G|1).
This error has no classical counterpart. Moreover, a continuum of quan-
tum errors may occur in a single qubit. Given the state |¢), noise may
slightly rotate it: |¢) — R®), with R a rotation matrix. Such small
errors will accumulate in time, eventually leading to incorrect compu-
tations (see Sec. 3.6). At first sight, it might thus appear that infinite
resources are required to correct such errors since infinite precision is
required to determine a rotation angle exactly.

However, we shall see in this chapter that, in spite of the above diffi-
culties, quantum error correction is possible. We shall first discuss some
simple examples: the three-qubit bit-flip and phase-flip codes, the nine-
qubit Shor code and the five-qubit code. Then, on more general grounds,
we shall discuss quantum codes, such as the CSS code, based on results
of classical linear error correction. We shall also introduce passive error
correction and include a discussion of the quantum Zeno effect. Finally,
we shall discuss fault-tolerant quantum computation and show that, under
certain hypotheses, if the noise level is below some threshold, then arbi-
trarily long, but reliable quantum computation is possible. We shall close
this chapter by discussing two quantum-communication problems: purifica-
tion of the quantum information transmitted through a noisy channel and
entanglement-enhanced information transmission over a quantum channel
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with memory.

7.1 The three-qubit bit-flip code

Let us assume that Alice wishes to send a qubit, prepared in a generic state
|¥) = «|0) + B|1), to Bob via a noisy quantum channel. The following
hypothesis is made: the noise acts on each qubit independently, leaving the
state of the qubit unchanged (with probability 1 — €) or applying the Pauli
operator o, (with probability €). We remind the reader that o, produces
a bit-flip error since 0;]0) = [1) and o4|1) = |0). To protect the quantum
state |[¢), Alice employs the following encoding:

0) — [0z) = [000),  [1) — [17) = [111). (7.1)

The subscript L indicates that the states |01) and |11,) are the logical |0) and
|1) states (also known as codewords), encoded by means of three physical
qubits. Correspondingly, a generic state is encoded as follows:

) = ]0) +8]1) — a|0L) + B[1L) = al000) + G[111). (7.2)

This encoding is implemented by means of the quantum circuit in Fig. 7.1:
the first CNOT gate maps («|0) + 3|1))|00) into («|00) + 8[11))|0) and the
second CNOT leads to the encoded state «|000) + 3]111) = «|0r) + 5|1L).
This state is an entangled three-qubit state, known as a GHZ (Greenberger,
Horne and Zeilinger) state or cat state. We should point out that Alice’s
encoding does not violate the no-cloning theorem since the encoded state
is not the same as three copies of the original unknown state:

al000) + B|111) # [))]) = (al0) + BI1)) (e]0) + B1)) (a]0) + BI1)).

(7.3)
' *

10> —D

10 an

Fig. 7.1 A quantum circuit encoding a single qubit into three.
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The three qubits, prepared in the cat state, are sent from Alice to Bob
through the noisy channel. As a result, Bob receives one of the following

states:

«|000) + (]111), (1—¢€)3,

«[100) + (]011), €1 —€)?,

«|010) + 3|101), e(1—e)?,

a|001) + G|110), €1 —€)?, (7.4)
al110) + £3]001), (1 —e),

al101) + £]010), (1 — ),

a|011) + 3|100), (1 —e),

al111) + (3]000), e,

where in the right-hand column we have written the probabilities of receiv-
ing the different states.

In order to correct a single bit-flip error, Bob might be tempted to mea-
sure the polarizations agl), 09) and 0§3) of the three qubits. To give a
concrete example, let us assume that he receives the state «|100) + 5]|011).
The three-qubit polarization measurement gives outcome 100 (with prob-
ability |a|?) or 011 (with probability |3]?). In both case, Bob could apply
majority voting and would conclude that the first qubit has been flipped.
However, the coherent superposition of the states [0) and |1) would then
be lost.

The problem may be solved by performing collective measurements on
two qubits simultaneously. This can be achieved by means of the circuit in
Fig. 7.2, which allows Bob to measure 09)09 and 021)023). Bob employs
two ancillary qubits, both prepared in the state |0). The first two CNOT
gates and the measurement of the polarization xg of the first ancillary
qubit (by means of the detector Dy) tell him the value of a§1)0§2>. Note

that g = 0 corresponds to 09)09 = 1, while g = 1 corresponds to

aél)af) = —1. In the same manner, the last two CNOT gates and the
measurement of the second ancillary qubit provide him with the value of
US)US” (x1 = 0 when US)US” =1 and z; =1 when 09)09) =-1).

As an example, we consider the case in which the first qubit has been

flipped. The initial state of the five qubits is then
(«[100) + £]011))]00). (7.5)
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It is easy to check that the four CNOT gates map this state into
(2|100) + 5]011))[11). (7.6)

The measurement of the two ancillary qubits gives Bob two classical bits of
information, xg and z1, known as the error syndrome, of value zo = 1 and
r1 = 1. Since zg = 1 Bob concludes that one of the first two qubits has
been flipped. In the same manner, from x; = 1 Bob concludes that either
the first or the third qubit has been flipped. Put together, the information
provided by the values of zg and x; leads Bob to conclude that the first
qubit has been flipped. Therefore, he applies a NOT gate (o) to this qubit
to recover the encoded state «|000) + 3]|111).

10> Dy — X,

10> D, — X,

Fig. 7.2 A quantum circuit for extracting the error syndrome in the three-qubit bit-flip
code.

In general, the measured syndrome and the action taken by Bob are the
following (see Fig. 7.3):

g = 0, z1 = 0, no action,

g = 0,7 = 1, apply NOT to the third qubit, (7.7)
9 = 1,21 = 0, apply NOT to the second qubit,

g = 1,27 = 1, apply NOT to the first qubit.

After Bob’s action, the five-qubit states and their probabilities will be given
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by
(|000) + 3[111))]00), (1—¢€)?,
(«|000) + B]111))[11), e(1—€)?,
(a|000) + B[111))[10), e(1—€)?,
(«|000) + B]111))|01), e(1—¢€)?, 78)
(a]111) + 3]000))|01), (1 —e), '
(a|111) 4 3]000))|10), (1 —e),
(a|111) + 5]000))[11), (1 —e),
(a|111) 4 3]000))|00), .

From now on, we may neglect the ancillary qubits. Finally, to extract the
qubit sent by Alice, Bob applies the inverse of the encoding procedure.
This decoding is shown in Fig. 7.3 and leads the three qubits sent by Alice
to the state (a|0) + B[1))]00) (for the first four states in Eq. 7.8) or to
(a|1) + 3]0))|00) (for the last four states in Eq. 7.8). Hence, the three-
qubit bit-flip code is successful if no more than one qubit has been flipped.
This is the most likely possibility if ¢ < 1. The code fails if more than
two qubits have been corrupted by the noisy channel. This takes place
with probability €. = 3¢2(1 — €) + 3. Therefore, the encoding improves the
transmission of quantum information provided €. < €; that is, € < % This
requirement is the same as in the classical three-bit code discussed at the
beginning of this chapter.
A few comments are in order:

1. From the syndrome measurement Bob does not learn anything about the
quantum state (the values of o and ). Hence, quantum coherence is not
destroyed. This is possible because a qubit of information is encoded in
a many-qubit entangled state and we only measure collective properties
of this state.

2. If we repeat quantum-error correction in the case of several uses of a
quantum noisy channel (for instance, if we wish to stabilize the state
of a quantum computer, namely the quantum memory, against envi-
ronmental noise), every time we must supply new ancillary qubits or
erase them to the |0) state. This process requires the expenditure of
power since, according to Landauer’s principle, erasure of information
dissipates energy.

Exercise 7.1 Design a circuit to measure the error syndrome in the
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N
NV ¢
/R
N N
/R N
N N
x0=0, x1=0 —
X0=0, xlzl
x0:1, xl=0
xozl, xlzl

Fig. 7.3 Error correction and decoding in the three-qubit bit-flip code. The values of
the classical bits g and x1 control the application of the NOT gates. The two CNOT
gates decode the single-qubit message.

three-qubit bit-flip code without using any ancillary qubits.

Exercise 7.2 Compute the fidelity of a generic pure state sent from Alice
to Bob through a bit-flip noisy channel. Compare with the result obtained
when the three-qubit bit-flip error-correcting code is applied.

7.2 The three-qubit phase-flip code

In this section, we shall show that it is also possible to correct phase errors.
These are quantum errors with no classical analogue. The phase-flip error
affects the states of the computational basis as follows:

0) = 0:0) = [0), 1) = o:[1) = —[1). (7.9)

Thus, a generic state 1)) = «|0) + §|1) is mapped into o |¢)) = a|0) — 5|1).
The method developed in Sec. 7.1 cannot correct phase errors. However, we
observe that a phase-flip error in the computational basis {|0), |1)} becomes
a bit-flip error in the basis {|+), |—)}, where

B = 00+m). 9 =FO-m). @0

Indeed, we have o,|4+) = |=) and o,|—) = |+). We may transform the
vectors of the computational basis into the new basis vectors (and wice
versa) by means of the Hadamard gate. Therefore, to correct phase errors
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we exploit the encoding of Fig. 7.4; that is,
0) = [0L) = [+++), (1) = [1r) = [———), (7.11)

and correct the bit-flip errors in the basis {|+),|—)} using the method
described in Sec. 7.1. The final decoding step is performed simply by im-
plementing the same array of gates as for the encoding (Fig. 7.4) but in the
reverse order.

% * H
10> —H H
10 H

Fig. 7.4 A quantum circuit encoding a single qubit into three for the phase-flip code.

7.3 The nine-qubit Shor code

The nine-qubit Shor code corrects the most general possible noise acting
on a single qubit. We employ the following encoding;:

J5 (1000) + [111)) (|000) + [111)) (|000) +[111)), 12
J5 (1000) — [111)) (|000) — [111)) (J000) — [111)),

0) — 10z)
1) — 1)

so that a generic quantum state |¢) = «|0) + 5|1) — «|0r) + G|1z). The
quantum circuit implementing this encoding is shown in Fig. 7.5. The first
two CNOT and the Hadamard gates of this circuit implement the three-
qubit phase-flip encoding as in Fig. 7.4,

0) — |+ ++), 1) — | ———). (7.13)

Then, the last CNOT gates encode each of these three qubits into a block
of three, by means of the three-qubit bit-flip encoding of Fig. 7.1

+) = 2 (10)+11)) — 5 (1000) +[111)),

7.14
=) = 5 (100 = 1)) — 5 (l000) —[111)). (714
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Fig. 7.5 A quantum circuit encoding a single qubit into nine.

This code can correct both bit and phase-flip errors. The quantum
circuit extracting the error syndrome is shown in Fig. 7.6. In each three-
qubit block a single bit-flip error can be detected and corrected following
the method described in Sec. 7.1. Moreover, we can deal with phase errors
affecting a single qubit. Let us assume that the phase error occurs in
the first qubit. As a consequence, the state of the first block of qubits is
modified as follows (neglecting the wave function normalization):

000) + |111) — [000) — |111),

(7.15)
000) — [111) — [000) + |111).

In order to detect this phase-flip error without disturbing the encoded quan-
tum state [¢) = «|0) + B|1), we must perform collective measurements.
More precisely, we measure

FOFOPOMOMOMON

vo = (7.16)
y1 = 0o oMo, '
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We have

cMaPa® (j000) + |111)) = (|000) + [111)),

(1) 5(2) ;(3) — (7.17)
otMoP ol (|000) — [111)) = —(]000) — |111}).
Therefore, if the phase flip affects the first block of qubits, we obtain
(yo,y1) = (=1, —1). Similarly, the cases (yo,y1) = (1,1), (1, —1) and (—1,1)
correspond to no errors, phase error in the third block and phase error in
the second block, respectively. To correct a phase error occurring in the
first block of qubits, we apply the operator U§1)0§2)og3) since

cMaPe® (1000) + [111)) = (|000) F [111)). (7.18)

In the same manner, we correct phase errors in the second and third block
by applying U§4)U§5)o§6) and a§7) a§8)a£9>, respectively.

The nine-qubit Shor code not only corrects single-qubit bit and phase-
flip errors, but also protects against arbitrary errors affecting a single qubit.
To understand this crucial point, let us consider a single qubit which in-
teracts with its environment. We know from Chap. 5 that, without loss of
generality, we can assume that the environment is initially in a pure state,
which we call |0) . The most general unitary evolution U of the qubit and
its environment may be written as

Ul0)|0) g = 10)]eo) g + [D)le1) g,

(7.19)
U 0)g = [0)|e2) g + [1)|es) g

where |eg) s, le1) g, le2)r and |es) are states of the environment, not
necessarily normalized or mutually orthogonal. For a generic initial state
of the system, |¢)) = «|0) + 3|1), we have

U(a|0) +ﬂ|1>)|O>E
= a(|0)]eo) g + [Dler) g) + B(10)]e2) 5 + 1) es) )

(@l0) +811)) 5 (leo)  + les) ) + (]0) = BI1)) 5 (o) p — les) )
+ (af1) + 810)) 3 (le1) g + le2) ) + (all) = 5]0)) 5 (le1) 5 — le2) )

I|¢>|61>E + Uz|¢>|ez>E + Ux|w>|e:c>E + Ux‘72|w>|e:c2>Ea (7.20)
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H] H]
H] H]
|H] H]
10> D]
10> D]
H] H]
] ]
] ]
10 D,
109 Ds]
® ® @744
W) 0
W) o
0 D] 10 D)
10> Ds| 10 D]
Fig. 7.6 A quantum circuit for extracting the error syndrome for the nine-qubit Shor
code. The symbols D; (i = 0,...,7) denote detectors measuring single-qubit polariza-
tions.
where
ler)g = 3(leo) s + les) ), lex)p = 5(leo)s — les) ), (7.21)
lex)p = 3(len) g +1e2) ), lezz)p = %(|61>E_ le2) )

Therefore, the action of U can be expanded over the discrete set of operators

{I,04,0, = i0,0;,0,}. This is because, as can be readily checked, these

operators are a basis for the Hilbert space of 2 x 2 matrices. This expansion

embodies the fact that arbitrary single-qubit errors can be expressed as a
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weighted sum of a finite number of errors: the bit flip (0,), the phase flip
(02) and the bit—phase flip (0,0, = —igy).

It is a fundamental feature of quantum error correction that a continuum
of errors may be corrected by correcting only a discrete subset of them,
namely the bit and phase-flip errors. This is because, by measuring the error
syndrome, we project the superposition (7.20) onto one of the four states
IlY)|er) g, o) ez) gy 0xl¥)|ex) gy 020 |¥)|€s2) ;. We can then recover the
original state |1)) by applying an appropriate error-correcting operation.

To grasp this point, let us give a concrete example: the correction, by
means of the three-qubit bit-flip code, of a single-qubit rotation on the first
qubit! described by the operator

UL = cos(e) I + isin(e)olV. (7.22)
The encoded three-qubit state a|000) 4+ (]111) becomes

(UM @ 1 @ 1) (|000) + 5[111))
= cos(e) (a]000) + B[111)) + isin(e) ([100) + £]011)). (7.23)

If we perform a collective measurement (of 021)09)) on the first two
qubits, then the wave function (7.23) is projected over the undamaged state
«|000) + B|111) with probability cos?(e) or over the state «]100) + 3|011)
with probability sin?(e). In the first case, no further action is needed. In
the latter case, we correct the bit-flip error as explained in Sec. 7.1.

Finally, we wish to discuss in more depth the role of encoding in the
Shor code. Let us consider the case in which an arbitrary error, described
by Eq. (7.20), effects the first qubit. We consider the evolution of the
codewords |0r) and |11,) separately. It is sufficient to write the evolution of
only the first three-qubit block since the other blocks are unchanged. We
have

(1000) + [111))0)
— [000)|eo) g + [100)|e1) g + [011)|e2) 5 + [111)]es)
= (1000) + [111)) 3 (leo) 5 + les) g) + (|000) — [111)) 3 (leo) 5 — les) )

+(1100) +1011)) 3 (lex)  + le2) 5) + (/100) —[011)) 3 (lex)  — le2) ).
(7.24)

1Of course, the same error can also be corrected by the Shor code.
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Similarly, we obtain
(1000) — [111))]0) &
— |000)[eo) g + [100)|e1) p — [011)|e2) p — [111)]es) g
= (|000) — |111)) £ (Jeo) 5 + les) ) + (1000) + [111)) £ (|eo) ;s — le3) &)
1
2

+(1100) —1011)) 3 (lex)  + le2) 5) + (/100) +1011)) 3 (lex)  — le2) ).
(7.25)

This implies that the final state of the environment is the same if the system
is initially either in the encoded state |01) orin |11) (see exercise 7.3). The
deep reason for this result is that the states [0z) and |1} are entangled and
it is impossible to tell them apart by observing just a single qubit (the state
of a single qubit is equal to 21 for both |0z) and [11)). Therefore, given
an arbitrary state «|0z) + §|11), the environment cannot learn anything
about a and 8 through interaction with a single qubit (inducing single-qubit
errors). Since quantum information is not destroyed by this interaction,
error recovery is possible.

Exercise 7.3 Compute the final state of the environment when the initial
state of system plus environment is described by |01)|0) 5 or |11)]0)z and
a generic single-qubit error occurs (|0z) and |11) are the codewords of the
nine-qubit Shor code).

7.4 General properties of quantum error correction

So far, we have described quantum error correction in the case of single-
qubit errors. We now discuss how to implement quantum error correction
when more general errors occur. First of all, we note that errors affecting
n qubits can be expanded over a set of 4™ operators {E, }, constructed as
tensor products of the single-qubit operators I, o, oy, and o,. An example,
for n = 5, is given by I(!) ®0'(2) ®a(3)®l(4)®0(5) The action of an arbitrary
unitary operator U on the n-qubit system plus the environment is

U1)]0) 5 Z By lv)ler) g (7.26)

where |¢) is the initial n-qubit state. We call &€ = {Ey, ..., E4n_1} the set
of all possible errors affecting n qubits and &, the subset of errors that can
be corrected by a code. Let us discuss what conditions should be satisfied
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to allow error correction. First of all, correctable errors should map two
different codewords |iy,) and |j.) into orthogonal states:

(iL|BLBy|jL) = 0 fori # j, (7.27)

where E, and E; € &.. If this condition were not satisfied, then the states
E,|ir) and Ey|jr) could not be distinguished with certainty and therefore
perfect error correction would be impossible. The second condition is that,
for any correctable errors F, and FEj,

(ip|ElEyli) = Cap, (7.28)

where Cy, does not depend on the state |ir). If this were not the case, we
would obtain some information on the encoded state from the measurement
of the error syndrome. Therefore, we would inevitably disturb the quantum
state. Note that Cy, = Cf,.

Conditions (7.27) and (7.28) can be put together and it is possible to
prove that error correction is possible if and only if

(ir| ElEy|jL) = Capdiy, (7.29)

where FE, and Ej, belong to the set &, of correctable errors and the matrix
Cup is Hermitian (for a proof see, e.g., Preskill, 1998a). If Cyp = dap, the
code is known as non-degenerate, In this case, it is possible to identify with
certainty which error occurred. In contrast, if Cyp # dqp, we call the code
degenerate.

Exercise 7.4 Show that condition (7.29) is fulfilled by the three-qubit
bit-flip code.

Exercise 7.5 Show that the three-qubit bit-flip code is non-degenerate
while the nine-qubit Shor code is degenerate.

It is instructive to describe the error recovery procedure in the simple
case of non-degenerate codes. Provided the system has been subjected to

correctable errors, the most general system plus environment state is given
by

Y Blv)ler)p- (7.30)

B, €€,

To measure the error syndrome, we can attach ancillary qubits, initially in
a well known state |0) 4, to the system, and operate the unitary transfor-
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mation

Yo B e sloa — D Eil)ler) plar) 4. (7.31)

E, €&, E, €&

A projective measurement of the ancillary qubits will then collapse this
sum to a single term

Erl)ler) plag) 4- (7.32)

Note that the system is now disentangled from the environment and from
the ancillary qubits. Since the operators E, are unitary (they are con-
structed as tensor products of the Pauli matrices, which are unitary), it is
sufficient to apply the unitary operator E}; = Er to the system to recover
the original state [¢).

7.4.1 The quantum Hamming bound

The quantum Hamming bound only applies to non-degenerate codes. It
tells us the minimum number n of physical qubits required to encode k
logical qubits, in such a manner that errors affecting at most ¢ qubits can
be corrected. If j errors occur, there are (;’
errors. For instance, if n = 3 and j = 2, the (g) possibilities are: (i) errors
in the first and second qubit, (ii) in the first and third qubit, and (iii) in
the second and third qubit. Each qubit may be subjected to three possible
errors (bit flip o, phase flip 0., and bit—phase flip 0,0, = —io,). Hence,
there are 37 possible errors for each error location. The total number of

) possible locations for these

possible errors affecting ¢ or less qubits is therefore given by

j: <n> 3. (7.33)

=0 M

Note that the sum over j starts from zero to include the error-free case too.
To encode k qubits by means of a non-degenerate code, each of these errors
must correspond to a 2*-dimensional subspace. These subspaces must be
mutually orthogonal and belong to the 2"-dimensional Hilbert space for n
qubits. Therefore, we can write the quantum Hamming bound

zt: (7>3j2’€ < om, (7.34)

=0 M



474 Principles of Quantum Computation and Information. II

For non-degenerate codes correcting a single error (¢ = 1), the quantum
Hamming bound reduces to (1 + 3n) 2k < 27 Let us call nmn the smallest
value of n satisfying this bound. For codes encoding a single qubit (k = 1)
and correcting arbitrary single-qubit errors, nmin = 5 qubits.?2 Note that
the ratio nmin/k decreases with k. For example, ny;, = 12 for & = 6.
Therefore, the encoding of quantum information is more efficient for large
k. The price to pay is a greater complexity of the corresponding quantum
error-correcting codes.

7.5 * The five-qubit code

In this section, we describe a quantum error-correcting code which protects
a qubit of information against arbitrary single-qubit errors. To accomplish
this, we encode a single logical qubit into five physical qubits, the minimum
number required for this task. The encoding is given by
|0) — |0z) = ﬁ (100000) — [01111) — [10011) + [11100)
+ 100110) + 01001) + [10101) + [11010)),
1) — |11) = % (J11111) — [10000) + [01100) — [00011)
+(11001) + |10110) — |01010) — |00101>)7

(7.35)

and can be implemented by the circuit in Fig. 7.7.

IO>@ ) °
0> H| o

v

Fig. 7.7 A quantum circuit encoding a single qubit into five. The circles with a minus
sign correspond to a phase shift of . The qubit |¢)) = a|0) 4+ 8|1) is encoded into the
five-qubit state a|0r) + B|1L).

2Tt is possible to prove that npyi, = 5 also in the case of degenerate codes, see Knill
and Laflamme (1997).
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A remarkable feature of the five-qubit code is that the circuit for detect-
ing the error syndrome, drawn in Fig. 7.8, is exactly the same as that for
encoding, but run backwards. There are 15 possible single-qubit errors, 3
for each of the five qubits (bit flip, phase flip and bit—phase flip). The four
measurements in Fig. 7.8 provide the 4 classical bits a, b, ¢ and d allowing
us to distinguish the 15 possible errors plus the case without errors. Ta-
ble 7.1 exhibits all possibilities. For instance, the case a =b=c=d =10
corresponds to no errors. If instead the outcomes of the measurements are
a=1and b = c=d =0, then the bit-flip error affected the first qubit. Dif-
ferent outcomes (error syndromes) are associated with different errors, as
shown in Table 7.1. The post-measurement state [¢)) of the qubit carrying
the quantum information is shown in the same table. It is easy to see that
the original state |¢)) = «|0) + 5|1) is recovered by a unitary transformation
U that depends upon the results a, b, ¢ and d of the measurements. For
examples, if a = b = ¢ = 0 and d = 1, then |¢') = a|0) — §|1) and we
restore |¢) by means of U = o,. Indeed, o,|¢') = |[¢).

I

[y" E \2

Fig. 7.8 A quantum circuit extracting the error syndrome and recovering the correct
state ) in the five-qubit code. The four detectors Dy, Dy, D. and Dy measure single
qubit polarizations. The resulting classical bits a, b, ¢ and d drive the unitary operator
U, which maps |1} onto the original state |)).

Exercise 7.6  Verify Table 7.1.

We point out that the five-qubit code does not require any ancillary
qubits. In any case, the code is dissipative: to apply the code again we
must first of all encode the state [¢)) onto the five-qubit state «|0L) +
B|1L). For this purpose, we must supply four new ancillary qubits prepared
in the state |0). Alternatively, if we wish to recycle the ancillary qubits,
we must first map their state |abed) into |0000). This means that the
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Table 7.1 Error, syndrome and resulting
state in the five-qubit code.

Error abed [¥")
None 0000 a|0) + B]1)
oo | 1101 | —al1) + Bl0)
o | 1111 | —a)0) + B[1)
of? 0001 )0) — B|1)
¥ 1010 a]0) — B|1)
o 1100 @|0) — B|1)
P | o101 a|0) — B|1)
ol 0011 | —a]0) — B[1)
ot 1000 | —al0) — A1)
ol? 0100 | —a]0) — B|1)
P 0010 | —a]0) — B[1)
ot 0110 | —af1) + 5|0)
¥ 0111 | —af1) + B|0)
(4) 1011 | —all) + 3/0)
<1> oM | 1110 | —af1) + 8l0)
;4> i )| 1001 | —al1) +3]0)

information contained in the classical bits a, b, ¢ and d is erased. As we know
from Landauer’s principles, erasure is a dissipative process. Therefore,
expenditure of power is required to correct errors.

7.6 * Classical linear codes

In this section, we shall discuss a few elements of the theory of classical
error correction. We shall focus on concepts that have proved useful for the
development of quantum error-correcting codes.

A classical error-correcting code C' is defined by a set of codewords C
and a set of correctable errors £ such that, for any u,v € C, with u # v,
and for any e, f € £, we have

ute # v+ f. (7.36)

This implies that correctable errors cannot map two different codewords
into the same string of bits. This is a necessary condition to unambiguously
recover the original codeword.

A code C is called an [n,k,d] code if we encode a k-bit message into
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an n-bit message and codewords differ from each other in at least d bits.
The Hamming distance dg(u,v) of two codewords u,v is defined as the
number of bits in which v and v differ. For example, given v = 00011010
and v = 01011000, we have dg (u, v) = 2 since the two strings u and v differ
in the second and the penultimate bits. We define

= min dg(u,v). (7.37)

u,veC
v

It is clear that the code C allows the correction of errors that affect at most
[(d — 1)/2] bits, where [ | means the integer part. Indeed, we must ensure
that the action of any two correctable errors e, f cannot lead to the same
n-bit message. In other words, we require that v+ e # v + f.

As an example, we consider the majority voting described at the be-
ginning of this chapter. This is a [3, 1, 3] code since we encode a single bit
(k = 1) into a block of three (0 — 000 and 1 — 111) and the two codewords
000 and 111 differ in d = 3 bits. Since [(d — 1)/2] = 1, this code is able to
correct, errors only affecting a single bit.

A linear code encoding k bits of information into an n-bit message is
determined by an n by k£ matrix G, called the generator matriz. The entries
of G are zeros and ones and a k-bit message x is encoded into an n-bit string
y as follows:

y = Gu. (7.38)

Note that here z and y must be treated as column vectors and that, in
computing Gz, additions are taken modulo 2. In the rest of this section, all
arithmetic operations must be understood modulo 2. The addition (mod-
ulo 2) of two codewords is again a codeword. Moreover, an arbitrary code-
word can be expressed as a linear combination of the columns of G. The
message is uniquely encoded if the columns of G are linearly independent.
This implies that the 2* codewords (of length n) constitute a k-dimensional
subspace in the n-dimensional space of the 2" binary strings of length n.

Another very important matrix is the (n — k) by n parity-check matriz
H, defined by

HG = 0. (7.39)

For any codeword y = Gz, we have Hy = H(Gz) = (HG)x = 0. This
means that the codewords are the kernel of H. In order to have 2* linearly
independent codewords, the kernel of H must have dimension k. Thus, the
(n — k) rows of H must be linearly independent.



478 Principles of Quantum Computation and Information. II

If a codeword y is corrupted by an error e, that is
y—1vy =y+e, (7.40)
then
Hy = H(y+e) = Hy+ He = HGx + He = He. (7.41)

Therefore, application of the parity matrix H gives an error syndrome He
that depends only on the vector error e and not on the codeword y. Error
correction is possible if we can unambiguously derive the error e from the
error syndrome He.

We point out that a code can be defined either by the generator matrix
G or by the parity-check matrix H. Given H, we can construct G as
follows. We take a basis {y1,...,yx} for the kernel of H. These vectors are
the columns of

G = [y17y25"'7yk]- (742)

On the other hand, given G we can construct H. We take (n — k) linearly
independent vectors z1, ..., z,—k orthogonal to the columns of G. We then
define

H=| . | (7.43)

7.6.1 * The Hamming codes

In order to illustrate the working of a classical linear codes, it is useful to
introduce two codes, which we shall call C; and Cy.3 As we shall see in the
next section, these codes are important for quantum error correction.

3The code C belongs to the class of the so-called Hamming codes.
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Code (1 is a [7,4, 3] code, defined by the generator matrix

1000
01 00
0 010
GCi) =100 01 (7.44)
01 1 1
1 01 1
110 1
If we label the 4-bit messages as
0 0 0 1
0 0 0 1
o= g =gl 2= s T =] (7.45)
0 1 0 1
then we obtain the 16 codewords y; = Gz; (i =0,1,...,15). For example,
we have
[1 00 0] [0 ]
0100 0 1
0010 1 1
Yr = G(Cl)$7 = 0001 1 = 1 (746)
0111 1 1
1011 0
110 1] L 0|

The 16 codewords vy, ..., ¥y15 are given in Table 7.2. Note that they are a
subset of the 27 = 128 possible 7-bit messages. It is easy to check that the
16 codewords differ in at least 3 bits, so that only single-bit errors can be
corrected ([(d —1)/2] =1).

Table 7.2 Codewords of the [7,4, 3] Hamming code.

Yo | Y1 | Y2 | Y3 | Ya | YUs | Ys | Y7 | Ys | Yo | Y10 | Y11 | Y12 | Y13 | Y14 | Y15

OO OO O OO
=== =0 OO
O =~ OFOO
O O == OO
= O = OO O
O = OO ~=O
—F R OOKRRO
OO K= F~=O
== 0O 00O
OO = OOM
— O R OO
O = O H O K
O KR OO K
— O O O K

OO OO - = =
e e R
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The rows of the parity-check matrix H(C4) must be linearly independent
and orthogonal to the columns of G(C). These conditions are fulfilled by

0001111
H(C))=]10110011]. (7.47)
1010101

Let us assume that a correctable error ey occurs, so that y; — y} = y; +
er. We know from Eq. (7.41) that H(Cy)y; = H(C1)er. As previously
discussed, only single-bit errors can be corrected by this code. Let us call
e; the error affecting the i-th bit; that is, e; = (1,0,0,0,0,0,0), e2 =
(0,1,0,0,0,0,0), ..., ez = (0,0,0,0,0,0,1). It is easy to check that the
error syndrome H (C1)ey, is just the binary representation of k. For instance,
for k = 3 we have

H(Cl) €3 — 5 (748)

= o O

o = O

_ = O

o O

_ o =

O~ =

— = =

O OO O = OO

Il
—_

and 011 is the binary representation of k = 3. It is therefore sufficient to
flip the k-th bit to correct the error.

Let us now describe the code Cy. We first of all note that, in general,
if HG =0, also GTHT = 0. Therefore, we can interchange the role of the
matrices {G, H} and {H?,GT}. Given a code C[n, k] (encoding k logical
bits into n physical bits), we can define another code C*[n, n—k] (encoding
n — k logical bits into n physical bits), known as the dual code of C. The
dual code has generator matrix H”? and parity-check matrix GT. We define
Cy = Cll. Hence,

G(C2) = [H(C1)]" = (7.49)

=== =0 OO
= = O O = O
—_ O = O = O =
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H(Cy) = [G(O)])" = (7.50)

o = O O
o O O
—_ == O

1
0
1
1

S O O =
O O = O
=

The 2"~ = 2774 = 8 codewords §j; of Cy are given in Table 7.3. They are
obtained from §; = G(C2)Z;, with

0 0 0 1
o= (0|, & =0, da=1|1], ..., & =]1]. (751
0 1 0

Note that the §; are a subset of the codewords y; of C; This can be checked
by direct inspection or simply by noting that the columns of G(Cs) are
linear superpositions of the columns of G(Ch).

Table 7.3 Codewords of the Cs code.

3 7

<
[=}
<
oy
<
N
<
<)
~
<
ot
<
)
<

OO OO O OO
O RO~ OF
=0 O = =O
O = = O O
RO OO
O = O H O K
OO R - HRFEO
— OO O = -

Exercise 7.7 Construct the generator matrix and a parity-check matrix
for the majority-voting code described at the beginning of this chapter.
Compute the error syndromes for correctable errors.

Exercise 7.8 Check with examples that the [7,4, 3] Hamming code can-
not correct errors affecting more than one bit.

7.7 * CSS codes

The Calderbank—Shor—Steane (CSS) quantum codes are defined as follows.
Let C7 and C5 be classical error-correcting codes. We assume that C is a
[n, k1] code (k1 logical bits encoded into n physical bits) and Cs a [n, k2]
code, with ko < ki. Moreover, we assume that the codewords of Cy are
a subset of the codewords of C';. Therefore, Co induces an equivalence
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relation in Cp: by definition, two codewords vy,vs € C; are equivalent if
there is a w € Cy such that v; = vo +w. The equivalence classes are known
as the cosets of Cy in C.

The CSS quantum error-correcting code associates a codeword |0) with
each equivalence class. We define

Gy = L v+ w
|v>—\/2722| + w). (7.52)

wECa

Note that here and in the rest of this section additions are bitwise modulo 2.
It is easy to check that, if v; and vy belong to the same coset, then |01) =
|62).  On the other hand, if v; and vy belong to different cosets, then
(91|52) = 0. Therefore, there are 2¥1=*2 linearly independent codewords,
corresponding to the 2¥1=%2 cosets. Hence, the CSS code encodes k; — ko
logical qubits into n physical qubits.

As an example, we consider the [n = 7,k = 4] Hamming code Cy and
the [n = 7,ky = 3] code Cy = Cfi-, introduced in the previous section. In
this case, we have a CSS code encoding ko — k1 = 1 logical qubit inton =7
physical qubits. Using Eq. (7.52), we construct |0,) as follows:

7
0) = J5 D lyo+ i)
=0
=(10000000) + [1010101) + [0110011) + [1100110)
+]0001111) + [1011010) + |0111100) + [1101001)),  (7.53)

where yo = 0000000 is a codeword of Cy (see Table 7.2) and the §; are
the codewords of C3. The other codeword |1) is associated with the other
coset of Cs in Cy. That is, we need to find a codeword of C'; which is not in
the coset determining |0r). For instance, we can consider y15 = 1111111,
so that

7
L) = ﬁ Z ly15 + i)
=0

7.54
= 5 ([1111111) +[0101010) + [1001100) + [0011001) (7.54)

+ [1110000) + [0100101) + [1000011) + [0010110)).

Let us show that, if the classical codes C; and C’2L can correct, errors
affecting up to ¢ bits, then the quantum CSS code can also correct up to
t-qubits. As we have seen in Sec. 7.3, it is sufficient to correct bit and
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phase-flip errors to correct arbitrary errors. Owing to these two type of
errors, the state (7.52) becomes
1) ap Z DTy 4w + e,), (7.55)

wECs

\/2k2

where the dot denotes the bitwise scalar product and the n-bit vector e,
(ep) describes amplitude (phase) errors. The j-th bit of the vector e, (ep)
is equal to 1 if a bit flip (phase flip) corrupted the j-th qubit. The error e,
(ep) is correctable by the CSS code if the number of 1’s is not greater than
t (we remind the reader that both C; and C3 can correct t-bit errors).

In order to detect the amplitude error e, we introduce a number of
ancillary qubits sufficient to store the error syndrome |Hie,) (H; is the
(n — k1) X n parity-check matrix associated with the classical code C1). We
map the state

) apl0) (7.56)

(the ancillary qubits are prepared in the |0) state) into

Z D@rwren |y 4w+ e,)|Hieg). (7.57)
weCa

\/2k2

We then measure the ancillary qubits to obtain the error syndrome Hie,.
This tells us the qubits for which a bit flip occurred. These errors can be
corrected by applying a NOT gate to each of these qubits. The resulting
state is

|9), = ___E: D Wtwlren |y 4 ), (7.58)

2k weCs

where we have neglected the ancillary qubits, which are factorized and do
not concern us any more.

Exercise 7.9 Construct the quantum circuit that maps the state (7.56)
into (7.57), for the case in which Cy is the [7,4,3] Hamming code and
Cy =Ct.

To correct phase errors, we first apply the Hadamard gate to each qubit,
obtaining the state

2" —1

v DD anlEl (7.59)

weCz z=0
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If we define 2’ = z + e, this state may be rewritten as

2" —1

\/2_n > Z 1)+ w)= 5 ey, (7.60)

weCsy 2’

and, using the result of exercise 7.10, as

W Z;L )2+ ep). (7.61)
The error e, now behaves as an amplitude error and can therefore be cor-
rected as described above: we introduce ancillary qubits in the state |0)
and apply the parity-check matrix Hy for Cy (note that, in the special
case in which Cy = Cf, then Hy- = Hp). Thus, we map |2’ + €,)|0) into
|2’ + e,)|Hse,). We then correct the error e, to obtain the state

U Z
\/2”—’@ g(; |2"). (7.62)

Finally, we apply the Hadamard gate to each qubit to recover the original
uncorrupted state |7).

Exercise 7.10 Prove that, for a linear code C[n, k],
if z € C* and 0 otherwise.

wee(-1)m = 2

7.8 Decoherence-free subspaces

In this section, we shall discuss passive quantum error-avoiding codes, in
which no measurements or recovery operations are performed to detect and
correct errors. The basic idea of passive codes is to encode the information
in decoherence-free subspaces. This is possible if the system—environment
interaction has certain symmetries.

An example will help us clarify this concept. Let us assume that a
system of n qubits is coupled to the environment in a symmetric manner
and undergoes a dephasing process, defined as

0); = [0);,, 1), =€), (G =1,....n) (7.63)

In this model, we suppose that the phase ¢ has no dependence on the qubit
7; that is, the dephasing process in invariant under qubit permutations.
This is an example of collective decoherence: several qubits couple identi-
cally to the environment. A concrete example of collective decoherence is
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obtained when an n-qubit register is implemented by a solid state system
and the main source of errors is the coupling of each qubit with phonons
whose wavelength is much larger than the distance between the qubits.

It is instructive to consider what happens for n = 2 qubits. We have

|00) — [00),

|01) — e™|01),

|10) — €™|10),
)

|11) — e®[11).

(7.64)

Since the states |01) and |10) acquire the same phase, a simple encoding
allows us to avoid phase errors:

|0L) = |01), 1) = |10). (7.65)

Then the state |1)r) = «|0r) + 5]11) evolves under the dephasing process
as follows:

[Wr) — ae|01) + Be'?|10) = e|yr). (7.66)

The overall phase factor e’ acquired due to the dephasing process has no
physical significance. Therefore, the two-dimensional subspace spanned by
the states |01) and |10) is a decoherence-free subspace, which can be used
to encode a single qubit. It is interesting that, if the dephasing angles are
different for the two qubits (|1); — €1|1); and |1), — €*¥2|1),), then the
dephasing angle affecting the state |11) is ¢1 — ¢2. Indeed, we have

YLy — €97(al01) + Be' P =92)|10)). (7.67)

For n = 3, it is easy to check that the subspaces spanned by {|000)},
{]|100),]010),|001)}, {]|011),|101),|110)} and {|111)} are decoherence-free.
Indeed, the states residing in these subspaces acquire global phases 1, e'?,
e?'® and e3¢, respectively.

More generally, in the n-qubit case any subspace spanned by the states
of the computational basis with an equal number of 1’s and 0’s (say, k
1’s and n — k 0’s) is decoherence-free. These subspaces have dimension
di, = (Z) and may be used to encode log, di, qubits.

Exercise 7.11 Is it possible to find decoherence-free subspaces in the
case in which amplitude (bit-flip) errors act identically on every qubit of a
quantum register?
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7.8.1 * Conditions for decoherence-free dynamics

Let us establish the conditions for decoherence-free dynamical evolution.
By definition, a subspace H of a Hilbert space H is decoherent-free if
the evolution inside H is unitary. We point out that this definition of
decoherence-free subspace does not rule out the possible presence of unitary
errors in quantum computation. Such errors may result from inaccurate im-
plementations of quantum logic gates. For instance, in ion-trap quantum
processors laser pulses are used to implement sequences of quantum gates
and fluctuations in the duration of each pulse induce unitary errors, which
accumulate during a quantum computation.

We first formulate the conditions for decoherence-free dynamics in terms
of the Hamiltonian description for a system in interaction with a reservoir.
Following Sec. 6.2.1, we can write the most general Hamiltonian describing
such a situation as

H=Hs®Ig+1Is@Hr+ Hsgr
Hs®@Ip+Is®Hp+ Y 0:® B, (7.68)

where Hg and Hpr describe the system and the reservoir and the operators
o; and B; act on the system and on the reservoir, respectively.

A decoherence-free subspace is found by assuming that there exists a
set of eigenvectors {|k)} of the operators o; such that

oilk) = cilk), (7.69)

for any ¢, |l~c> Note that the eigenvalues ¢; are degenerate since they depend
only on the index i of the operator o; and not on k. If we limit ourselves to
considering the subspace H spanned by the states {|k)}, we can write the
Hamiltonian as

H=HsoIg+1Is® [HR +y ciBl} , (7.70)

where H is the restriction of H to H. If we assume that the system Hamil-
tonian Hg leaves the Hilbert subspace H invariant and if the initial state
resides in 7:{, then the evolution of the system is decoherence-free.

To show this, we assume that at time ¢ = 0 the system and the environ-
ment are not entangled. Then, the initial system plus environment state
may be written as

psr(0) = ps(0) @ pr(0), (7.71)
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where pg(0) and pr(0) are the system and environment density matrices at
time ¢t = 0. Moreover, we assume that the initial density matrix describes
a state residing in H; that is,

0) = ZS;}@GL (7.72)

with [2), |7) € H. We can also write

) =D rwludvl, (7.73)

where {|u} is a basis for the Hilbert space of the environment. It is easy to
see that temporal evolution does not take the system out of the subspace
‘H. Indeed, we have

Usr(t)([§) ® |u)) = Us(t)|i) @ Ur(t)|u), (7.74)

where Usp(t) = exp(—iHt/h), Us(t) = exp(—iHgt/h) and Ug(t) =
exp[—i(Hgr + _;¢;Bj)t/h]. Hence, the evolution of the state (7.71) is
given by

psn(t Zs~~Us VGIUL®) © > ru Ur@) ) (vUR®).  (7.75)

v

It follows that

ps(t) = Trplpsn(t)] = Us(t)ps(0)UL(1), (7.76)
and therefore the evolution of the system is unitary.

The conditions for decoherence-free dynamics can also be expressed in the
framework of the Kraus representation. As we saw in Sec. 5.4, the Kraus operator
E, is defined as E, = p(|Usr|0) . The matrix representation of £, in the basis
in which the first states span H is given by

guﬁS 0

-
. 0 C,

; (7.77)

where g, = p{1|Ur|0) , Us is the restriction of Us to H and C,, is a block matrix
acting on the subspace H orthogonal to H. Therefore, all Kraus operators
E,,, when restricted to a decoherence-free subspace 7‘(, have an identical unitary
representation « Ug, up to a multiplicative constant gu. The normalization
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constraint 3 B} E, = Is implies 3, |g4|*> = 1. If the initial state ps resides in

the subspace H; that is,
ps 0
= , 7.78
ps [ 00 ] (7.78)

then the final state p%s also resides in H, and the system’s evolution is unitary

since

UspsUL 0
0 0

(7.79)

o [Zu |9u|205ﬁ5ﬁ; 0
pPs = 0 0

7.8.2 * The spin-boson model

A nice example of decoherence-free dynamics is the spin-boson model, which
describes n spin-1 particles (the system) interacting with a bosonic field
(the reservoir). The interaction Hamiltonian is

Hsp = 33 [ohoi @b+ 9507 @b + g0t @ (tn+0])], (7.80)
=1 k

where O'ii = 0, * 10y and o} are Pauli operators acting on the i-th spin,
b (b;) is the annihilation (creation) operator for the k-th mode of the
bosonic field and gi, g5, are coupling constants (note that the requirement
of Hermitian Hgg implies that (gj;)* = g;;). This model describes the
interaction between a system of qubits (spins) and a bosonic environment,
including both dissipative coupling (the terms aj' ®by and o, ®b;2 describe
energy exchanges between the system and the environment) and phase-
damping processes (through the o7 ® (by + bz) term).

Let us assume that the coupling constants are independent of the qubit
index; that is, gi = g,:f and g7, = g7. This collective decoherence situa-
tion is relevant in solid-state systems, provided the coupling to a phononic
bath is the dominant source of decoherence and that the wavelength of the
relevant phonon modes is much larger than the qubit spacing.*

4 Another physical situation in which the spin-boson model is relevant is the coupling
of n identical two-level atoms to a single mode of the electromagnetic field (for instance,
we can consider n ions in a trap coupled to a laser field). In this case, provided the
wavelength of the radiation field is much longer than the distance between the atoms,
Hamiltonian (7.80) reduces to

Hsp = Z (g+az+ ®b+g o, ®bT).

i=1
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Given the collective decoherence assumption, a decoherence-free sub-
space exists. Indeed, we can define the total spin operators

So = zn:af‘, (7.81)
i=1

with a = +, —, 2, so that the coupling Hamiltonian becomes

Hsp = Z So @ Ba, (7.82)

a=+,—,z

where By =", gi by, B = Bi and B, = 3", gz (bx + bl). The condition
(7.69) for decoherence-free dynamics is fulfilled if we encode the quantum
information in singlet states (S = 0); that is, in states |k) satisfying

Salk) =0, (7.83)

fora=+,—,z.
For the case n = 2, the only singlet state is

= (101) = [10)). (7.84)

For n = 4, the (singlet) decoherence-free subspace has dimension two and
is spanned by the states®

0z) = 1(]0101) + [1010) — [0110) — |1001)),
2(0011) 4 2|1100) — [0101) — [1010) — [0110) — |1001)).
(7.85)

1) = 5(

5These states can be computed using standard methods for the addition of angular
momenta. In general, given two angular momenta j; and j, and the total angular
momentum J = j; + j,, we have

ljrgz; IM) = > [jima; jama) (jima; jamaljija; JM),

mi,m2

where |j1j2; JM) and |jim1;jams) are eigenstates of j2, 52, J2, J, and 52, j12, 52, joz,
while the matrix elements (j1m1;jama|j1j2; JM), usually denoted as (jijamimea|JM),
are known as the Clebsch—Gordan coefficients. Note that the conditions M = mj + mao,
|M| < J, |j1 — j2| <J < j1+ 72 must be fulfilled. The four-qubit singlet states of (7.85)
are obtained as combination of the two-qubit singlet (|s) =|j =0,m =0) = ﬁ(ml) —
110))) and triplet (|t+) = |j = 1,m = 1) = [00), [to) = |j = 1,m = 0) = —L (|01) + [10}),
[t—) = |7 = 1,m = —1) = |11)) states, with the correct Clebsch-Gordan coefficients:
0L) = |1 =0,jo =0;J =0,M =0) = [s);, ® ‘5>34 and |11) = [j1 = Lje = 1;J =

0,M =0) = %(|t+>12 @ [t-)g4 = [to)12 @ [to)gy + [t-)1p ® [t4)34)-
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Hence, this subspace can be used to encode a single-qubit state. In this
manner we can construct the singlet states for progressively higher numbers
of qubits. Group theory tells us (see, e.g., Lidar et al., 2000) that the
dimension of the (singlet) decoherence-free subspace for n qubits is

n!

im|DF = .
dim[DFS(M)] = ) (7.86)
This subspace can be used to encode nj, logical qubits, with
nr = logy{dim[DFS(n)]} ~ n— 3log,n, (7.87)

where the right-hand expression is obtained after application of Stirling’s
formula n! ~ V27 n(™+1/2e=" for large n. This means that the encoding
efficiency € = ny,/n, defined as the number of logical qubits ny, per number
of physical qubits n, tends to unity as n — oo.

7.9 * The Zeno effect

The Zeno effect, in its simplest instance, refers to the freezing of the evolu-
tion of a quantum state due to frequent measurements. However, as we shall
discuss below, the Zeno effect also takes place in systems in which a strong
disturbance dominates the temporal evolution of the quantum systems. In
general, there is no need to invoke the collapse of the wave function. Even
more importantly from the viewpoint of quantum computation, the Zeno
effect does not necessarily freeze the dynamics. The system can evolve
away from its initial state, although it remains in a “decoherence-free” sub-
space, which can in principle be appropriately engineered. These issues are
discussed in the present section, following the presentation of Facchi and
Pascazio (2003).

We first consider a simple example where the Zeno phenomenon is in-
duced by frequent projective measurements. Let H be the total, time-
independent Hamiltonian of a quantum system and |¢)(0)) = |a) its initial
state at time ¢ = 0. The survival probability p(t); that is, the probability
to find the system in the same state |a) at time ¢, is given by
2 i 2
| = |talexo( = 5 Ht)la)| (7.88)

p(t) = |(ale®) :
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A short-time expansion yields a quadratic behaviour:

p(6) ~ [(al (1~ FHE = 512 )]
Np%x@Wm—mmWﬁ“ﬂ—%, (7.89)
where
h (7.90)

ty =
V/(alH?|a) — (a[H]a)?
is the so-called Zeno time.%
If N projective measurements are performed at time intervals 7 = %,7

then the survival probability at time ¢t is

p(t) = [Halw@) )™ = )] = [p(£)]"

2\ 2

If N — oo, then p(t) — 1; namely, the evolution is completely frozen. Note
that the decay in time of the survival probability (7.91) is exponential: for
a given 7 and t = N7 (N integer),

p(t) ~ exp[ —~(7)t], (7.92)

with the decay rate v(7) ~ 7/t%.

We remark that the quantum Zeno effect is a direct consequence of the
following mathematical property of the Schrodinger equation (sketched in
Fig. 7.9): in a short time 07 = t/N = O(1/N), the phase of the wave
function evolves as O(67), while the probability changes by O((d7)?), so
that p(t) ~ [1 — O(1/N?)]¥ — 1 when N — oo.

Exercise 7.12 Discuss the Zeno effect for a two-level system driven by
the Hamiltonian H = Hg + Hiyg, with Hy = %hwaz and Hiy = %thx, the
initial state of the system being |0).

6Note that, if the Hamiltonian H is divided into free and interaction parts, H = Hg +
H;,t, with the initial state |a) eigenstate of the free Hamiltonian (Hpla) = wqla)) and the
interaction part off-diagonal in the basis of the eigenstates of Ho, so that (a|Hins|a) = 0,

2
int

then the Zeno time is given by tz = h/4/(a|H: ,|a) and only depends on the interaction
Hamiltonian.

"In this example we assume that the measurement is selective: we select only the
survived component (|1(7)) — |a){al(7))) and stop the others. Note that, as we shall

discuss below, the Zeno effect also takes place for non-selective measurements.
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Z
O(Srm ey O(8T)
y(0)
W(d1)
y

X

Fig. 7.9 A schematic drawing of the short-time evolution of phase and probability for
a wave function whose evolution is governed by the Schrodinger equation.

Note that the collapse of the wave function (an inherently non-unitary
and irreversible process) is not necessarily required for the quantum Zeno
effect. In order to illustrate this concept we consider a three-level system
governed by the Hamiltonian

H = 01 (10) (1] + [1)(0]) + Q2(]1)(2] + [2)(1]). (7.93)

In the basis {|0), |1),|2)} this Hamiltonian reads

0 Q 0
0 Q 0

If the system is prepared at time ¢t = 0 in the state |¢(0)) = |0), then the
survival probability is given by (see exercise 7.13)

2
-
(QF +03)

p(t) = [0l (@)* = (7.95)

2 2
Qg + Q% cos <M)

h

Note that for large values of the ratio 5/ the system is in practice frozen
in the level |0). In this case, as soon as the system makes a transition from
|0) to |1) it undergoes a very fast Rabi oscillation to level |2). Therefore, we
can say that level |2) acts as a measuring apparatus: when the ratio 2/
is large, then a better observation of the state of the system is performed,
thus hindering the transition |0) — |1). We stress that the measurement
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performed by level |2) is continuous (there is no wave-function collapse)
and Hermitian (the model is purely Hamiltonian).

Exercise 7.13 Prove Eq. (7.95).

The following theorem provides a very general formulation of the quan-
tum Zeno effect. Let us consider a quantum system whose states reside
in the Hilbert space H. The evolution of the system density matrix p is
described by the superoperator

(1) = U pl0) = UDpO)UT(1),  UW) = exp( — THE),  (7.96)

where H is a time-independent bounded Hamiltonian. We also introduce a
set of projectors P; such that P;P; = 0;; P; and ), P; = I. The subspaces
relative to the operators P; are denoted by H; = PH (H = ®;/H;). We
consider a non-selective measurement (the measuring apparatus does not
select the different outcomes) described by the superoperator

Pp =Y _ PupP. (7.97)

The evolution of the system after N such measurements performed in a
time ¢ is determined by the superoperator

SN = (Puyn)" P, (7.98)

where we have also operated a first measurement at time ¢ = 0, which
prepares the state Pp(0) = >, P;p(0)P;. The evolution of the system
density matrix reads

p(t) = ZWi(t)pon(t% (7.99)

with W, (t)W;(t) = P;. Moreover, the probability that the system is found
in the subspace H,; is

pi(t) = Tr[p(t)P] = Te[Wi(t)poW/ (1)] = Tr[poP] = ps(0).  (7.100)

It is clear from Egs. (7.99) and (7.100) that any interference term between
the different subspaces H; is destroyed and that the probability is conserved
in each subspace. Each operator W;(t) is unitary within the subspace H;
and has the form

Wit) = P, eXp( -~ %PiHPit). (7.101)
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The above theorem is interesting from the viewpoint of quantum compu-
tation, as it suggests strategies to contrast decoherence. A simple example
will help clarify this concept. We consider again Hamiltonian (7.94) and
the projectors

100 000
P=|010|, PL=]000], (7.102)
000 001

satisfying P, + P, = I. The subspace H; = P;’H is the two-dimensional
subspace (qubit) of interest for quantum computation, while the coupling
) mimics decoherence. In the limit N — oo the operators (7.101) become

; ; 0 2t0
Wl(f,) = Plexp(——Pallt) = PleXp - Qlt 00
h
0 00
cos(Tlt) —zsin(%) 0
= —zsin(ﬂ—it) oS %) 01, (7.103)
0 0 0
000
Wg(t) = PgeXp(——PQHPQt) = P2 = 000
001
and the qubit evolves according to the Hamiltonian
0 O 0
PHP, = [ 0 0]. (7.104)
0 0 O

The subspaces H; and Hsy decouple; that is, the evolution of the qubit
becomes decoherence-free. Finally, we point out that other Zeno strategies
based on unitary disturbances (instead of projective measurements) of the
system that we wish to protect are also possible (see Facchi and Pascazio,
2003).

7.10 Fault-tolerant quantum computation

So far, our discussion of quantum error correction has assumed that encod-
ing, decoding of quantum information and error recovery operations can
be achieved perfectly. However, these are complex quantum computations
subject to errors. Moreover, quantum logic gates performed in quantum
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information processing may propagate errors in the quantum computer. In
spite of these difficulties, we shall show that, under certain assumptions,
arbitrarily long quantum computation can, in principle, be performed re-
liably, provided the noise in individual quantum gates is below a critical
threshold. A quantum computer that performs reliably even in the presence
of imperfections is said to be fault-tolerant. Sophisticated techniques have
been developed for the construction of fault-tolerant quantum circuits (for
a review see, e.g., Preskill, 1998b). In the following, we shall limit ourselves
to illustrate the basic principles of fault-tolerant quantum computation.

7.10.1 Awoidance of error propagation

If an error affects one qubit and this qubit interacts with another in order to
perform a two-qubit gate, then the error is likely to propagate to the second
qubit. To grasp this point, it is sufficient to consider the CNOT gate. If
a bit-flip error affects the control qubit, then the error also spreads to the
target qubit. For instance, we consider CNOT(|0)|0)) = |0)|0). If there is a
bit-flip error affecting the control qubit (|0) < |1)), then CNOT(|1)|0)) =
[1)|1), so that both the control and the target qubit are flipped. A more
subtle, purely quantum effect, is the backward sign propagation, discussed
in Sec. 3.4 (see exercise 3.11): a phase error affecting the target qubit is
also transferred, after application of the CNOT gate, to the control qubit.

The backward sign propagation problem spoils the efficiency of the
error-correcting quantum circuits shown earlier in this chapter. If we as-
sume that the probabilities of errors affecting one and two qubits are O(e)
and O(€?), respectively®, then a single-qubit error-correcting code is useful
when it lowers the error probability from O(e) to O(e?). This is not the
case, for example, for the circuit drawn in Fig. 7.6 once phase errors affect-
ing the ancillary qubits are taken into consideration. The problem is that
we use a single ancillary qubit for more than one CNOT gate. This is clear
from Fig. 7.10, which contains the basic building block for error extraction.
If, with probability O(e), a phase error effects the bottom qubit in the
left-hand circuit of Fig. 7.10 before the application of the two CNOT gates,
then this error spreads to two of the qubits used to encode the quantum
information. Therefore, a code able to correct a single-qubit error (such as
Shor’s nine-qubit code) fails with O(e) probability. This problem is avoided
by the right-hand circuit in Fig. 7.10, which employs each ancillary qubit

8This is the case, for instance, when errors affecting different qubits are completely
uncorrelated with one another.
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only once. Therefore, a phase error affecting a single ancillary qubit is
propagated only to a single qubit. Then, the probability of having two
phase errors transferred from the ancillary qubits to the qubits used for
encoding is O(€?). We say that the right-hand circuit in Fig. 7.10 is fault-
tolerant, while the left-hand circuit is not. More generally, a quantum code
correcting up to ¢ errors is said to be fault-tolerant if its failure probability
is O(ett1).

Do Do

D,

Fig. 7.10 Quantum circuits for extracting the error syndrome. The left-hand circuit
employs the same ancillary qubit twice and is therefore not fault-tolerant. In contrast,
the right-hand circuit is fault-tolerant.

We point out that the ancillary qubits must be prepared in an appropriate
initial state. If we prepare them in the usual state |00), consider a generic encoded
initial state «|000) + (|111), and assume that a bit-flip error has corrupted the
first qubit, then the fault-tolerant circuit in Fig. 7.10 maps the initial state

(«|100) + B|011)) |00) (7.105)

onto
«|10010) + 3]01101). (7.106)

Therefore, the measurements of the two ancillary qubits projects the five-qubit
state onto |10010) (with probability |a|?) or [01101) (with probability |3|*). In
both case, since one of the two ancillary qubits changed its state from |0) to |1), we
may conclude that a bit-flip error affected the first or the second qubit. However,
this procedure is not adequate, as we have destroyed the quantum information
encoded in the superposition of the states |000) and |111).

To solve this problem, we prepare the ancillary qubits in the equally weighted
superposition of the states |00) and |11). Therefore, the initial state

(a[100) + ﬁ|011))ﬁ (100) + [11)) (7.107)
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is mapped by the right-hand circuit in Fig. 7.10 onto
(a]100) + 8l011)) 7 (|01) +[10)). (7.108)

The measurement of the ancillary qubits gives us, with equal probabilities, out-
come 01 or 10. In both cases, we can conclude that a bit-flip error affected
the first or the second qubit, without destroying the quantum superposition
a|100) + 3]011).

Exercise 7.14 Design a fault-tolerant syndrome measurement for the
CSS code described in Sec. 7.7.

7.10.2 Fault-tolerant quantum gates

In order to implement a reliable quantum computation, we must apply
fault-tolerant quantum gates. This is possible if we perform quantum logic
operations directly on encoded states.

A fault-tolerant CNOT gate is shown in Fig. 7.11. In this quantum
circuit, the first three physical qubits encode the control and the last three
physical qubits the target, according to the rule |0z) = |000) and |17) =
[111). It is easy to show that, if the CNOT gates are applied transversally
(that is, bitwise), as shown in Fig. 7.11, then the truth table of the CNOT
gate is verified for the logical qubits. Indeed, starting from the six-qubit
state |zr)|yL), with zr,yr = 0,1, we obtain at the end of the circuit
|zL) |z @ yr). We point out that the CNOT gate is implemented fault-
tolerantly, because each qubit in each code block is involved in a single
quantum gate. Therefore, errors in one block can propagate at most to one
qubit in the other block, not inside the same block and this construction of
the CNOT gate is thus fault-tolerant.

We note that it is possible to find a universal set of fault-tolerant quan-
tum gates, in terms of which any quantum computation may be expressed.

7.10.3 The noise threshold for quantum computation

The threshold theorem for quantum computation tells us that, given cer-
tain assumptions about the noise model (in the simplest case, we consider
random and uncorrelated errors) and provided the noise affecting individual
quantum gates is below a certain threshold, then it is in principle possible
to efficiently implement arbitrarily long quantum computations.

The key ingredient for this result is the use of concatenated codes. To
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Fig. 7.11 A quantum circuit implementing a transversal CNOT gate between two logical
qubits encoded in three-qubit blocks.

understand this concept, let us consider the CSS code described in Sec. 7.7,
which encodes a single logical qubit in a block of n = 7 qubits. In a
concatenated code each qubit of the block is itself a 7-qubit block, and
so on (see Fig. 7.12). If there are L levels of concatenation, then a single
logical qubit is encoded into n” = 7% physical qubits.

L=2

Fig. 7.12 Concatenation of a 7-qubit code up to the L = 2 level.



Quantum Error Correction 499

Let us call € the error probability per qubit per appropriate unit of time
(for instance, the time required to implement a single elementary quantum
gate) and « the number of locations in the quantum circuit where an error
can affect a single qubit before that error correction is applied. Typically,
for quantum gates such as the fault-tolerant CNOT and for codes correcting
a single error, assuming that error correction is applied after each fault-
tolerant quantum gate, we obtain a ~ 102. Error correction at the first
level of encoding (L = 1) fails if at least two qubits have been corrupted.
Therefore, the failure probability is

P~ ce? & ol (7.109)

where ¢ ~ o2 is the number of ways in which a fault-tolerant circuit can
introduce at least two errors. At the second level of encoding (L = 2), we
employ n? qubits and error correction fails if at least two of the subblocks
of size n fail. Thus, the failure probability is

p2 = cpt = o?(a?e?)?. (7.110)

We can iterate this procedure. The failure probability at level-L concate-
nation is
(a%e)?”

k (7.111)

2
br = cpr1 =
L—1 o

If we wish to implement a computation of length T (T denotes the
number of logic quantum gates) with accuracy €g, then the error probability
per logic gate must be < ¢o/T. Thus, we must concatenate our code a
number of times L such that

(ae)?” €0
P~ o < o (7.112)
Provided € < €, = 1/a?, this inequality is fulfilled for
f log(T/a%eo)
L >L ~log|———|. 7.113
Og[ log(1/a2e) (7.113)

The number of physical qubits fito; = n’ required to achieve this level of
accuracy is

_ [log(T/a%e)] """
Ngot A { log(1/a%) } . (7.114)

Note that 7itor grows only polylogarithmically with 7" and 1/e.
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We stress that the above results assume that the quantum computer
hardware is such that many quantum gates can be executed in parallel in a
single time step. Otherwise, errors in concatenated codes would accumulate
too quickly to allow successful error correction.

Finally, we note that, for o ~ 102, the noise threshold is €y, ~ 1074,
Various sophisticated calculations found in the literature give different re-
sults €, ~ 1076 —10~%. The numerical value of the noise threshold depends
on the assumed characteristics of the quantum computer hardware.

7.11 * Quantum cryptography over noisy channels

A central problem of quantum communication is how to reliably transmit
information through a noisy quantum channel. The carriers of information
(the qubits) unavoidably interact with the external world, leading to the
phenomenon of decoherence. The problem of noise in communication chan-
nels plays a crucial role in quantum cryptography: In this case, noise can
be attributed, in the worst case, to the measurements performed on the
qubits by an eavesdropper. Since quantum communication protocols can
be seen as special instances of quantum computation, the quantum error-
correction codes discussed in this chapter could be used to deal with the
problem of noisy channels. One should, however, take into account the fact
that the qubits belonging to the two communicating parties can be very
far away from each other. Therefore, any error correction procedure must
be based only on the so-called LOCC, that is on local quantum operations
(performed by Alice and Bob on their own qubits), possibly supplemented
by classical communication. We shall show below that techniques for the
purification of mixed entangled states may be crucial for quantum commu-
nication protocols.

Let us consider the E91 cryptographic protocol (see Sec. 4.3.2). We
assume that Alice has a source of EPR pairs at her disposal and sends
a member of each pair to Bob. The eavesdropper Eve attacks the qubits
sent by Alice by means of the quantum copying machine of Buzek and
Hillery (see Sec. 5.1.3). As a result, Alice and Bob share partially entangled
pairs. Each pair is now entangled with the environment (Eve’s qubits)
and described by a density operator. In this section, we shall describe
an iterative procedure (known as quantum privacy amplification) to purify
entanglement and, as a consequence, reduce the entanglement with any
outside system to arbitrarily low values (note that a maximally entangled
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EPR pair is a pure state automatically disentangled from the outside world).
We shall also discuss the effect of noisy apparatus. This is important since,
under realistic conditions, also the local operations (quantum gates and
measurements) that constitute a purification protocol are never perfect and
thus introduce a certain amount of noise.

Eve’s attack is represented in Fig. 7.13. Note that the unitary transfor-
mation W stands for the copying part of the Buzek—Hillery machine (drawn
in Fig. 5.1). The two bottom qubits in Fig. 7.13 are prepared in the state

B) = ]00) + B|01) +~[10) + 5]11) (7.115)

and we assume that «, 3, 7, § are real parameters. Let us call pp and pg
the density matrices describing the final states of Bob and Eve’s qubits.
We assume isotropy; that is, if we call (x,y, z) the coordinates of the qubit
sent by Alice to Bob before eavesdropping, then the Bloch coordinates
(zB,yB,2B) and (vg,yE,2E) associated with pp and pg are such that
xp/r = yp/y = z/z = Rp and zg/x = yg/y = zg/z = Rg. These
conditions are fulfilled for

6:%Q—Q/%—%a27 7:0, 5:%044—1/ —%042. (7116)

It can be checked by direct computation (see exercise 7.15) that in this
case (zp,yB,2B) = 2ad(x,y,z) and (zg,yE,2r) = 2af(x,y,z). Since
the Bloch-sphere coordinates must be real and non-negative, we obtain

ﬁ <a< %. The ratios Rp and Rg are shown in Fig. 7.14. It can be
1 2

seen that the two limiting cases a = 73 and a = 7 correspond to no

intrusion (zp = z, yp = y, 2z = z) and maximum intrusion (rg = zp,

(SIS

YE = YB, 2B = 2B), respectively. Note that in the latter case we recover
the symmetric Buzek—Hillery machine (pg = pp) described in Sec. 5.1.3 (in
this case the state vector (7.115) reduces to the state (5.64), obtained at the
end of the preparation stage in the quantum copying network of Fig. 5.1).
The degree of Eve’s intrusion is conveniently measured by the parameter

o — ——
Ve V2

with 0 < f, < 1.

Exercise 7.15 Show that isotropic cloning is obtained by means of the
Buzek—Hillery copying machine if the parameters «, 3, 7, § in the initial
state (7.115) are chosen as in Eq. (7.116).
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Pa

EPR

Py
W P

Fig. 7.13 A quantum circuit representing the intrusion of the eavesdropper Eve in the
E91 protocol. The unitary transformation W is the copying part of the circuit drawn in
Fig. 5.1. The density matrices p4, pp and pg represent the states of Alice’s, Bob’s and
Eve’s qubits after tracing over all other qubits.

0.72 0.74 0.76 0.78 0.8
o

Fig. 7.14 Ratios Rp (solid line) and Rg (dashed line) for the isotropic Buzek—Hillery
copying machine as a function of the parameter a.

Alice and Bob purify entanglement by means of the DEJMPS (see
Deutsch, Ekert, Jozsa, Macchiavello, Popescu and Sanpera, 1996) proto-
col. At each step, the EPR pairs are combined in groups of two. The
following steps are then taken for each group (see Fig. 7.15):

e To her qubits Alice applies a 3 rotation about the z-axis, described by



Quantum Error Correction 503

the unitary matrix

B ™, 1 —
U=ER(3) =5 1]. (7.118)
e To his qubits Bob applies the inverse operation
V =R <_E) _pto |t (7.119)
A2 20d 1] '

e Both Alice and Bob perform a CNOT gate using their members of the
two EPR pairs.

e They measure the z-components of the two target qubits.

e Finally, Alice and Bob compare the measurement outcomes by means of
a public classical communication channel. If the outcomes coincide, the
control pair is kept for the next iteration and the target pair discarded.
Otherwise, both pairs are discarded.

U ®
1
pAB pAB
AY ®
U D,
Pag
A\ D,

Fig. 7.15 A schematic drawing of the DEJMPS entanglement purification scheme. Note
that the density matrix p/y  describes the two top qubits only when the detectors Do
and D1 give the same outcome.

To see the effect of the DEJMPS procedure, let us consider the special
case in which the initial mixed pairs are described by the density matrix pap
obtained from the ideal EPR state |¢1) = é (]00) +]11)) after application
of the Buzek—Hillery copying machine with intrusion parameter f,. We



504 Principles of Quantum Computation and Information. II

obtain
o? + 62 0 0 2a0
0 p[2++2 28 0
pap =} oo . (7.120)
0 28y B+~ 0
208 0 0 a? 4 2

We note that this state is diagonal in the Bell basis {|¢*) =
pE) = $(|01> +110))}. Indeed, we have

2 (|00)£[11)),

pap = Alg" )T+ Bl ) o™ |+ Cly" )W |+ DIy~ ) (¥, (7.121)

where A = 3 (a+0)?, B=1(a—6)?, C=3(B+7)? and D = 3(3 —7)%
The quantum circuit in Fig. 7.15 maps the state pap of the control pair,
in the case in which it is not discarded, onto another state py 5 diagonal in
the Bell basis. Namely, p; 5 can be expressed in the form (7.121), provided
new coefficients (A’, B’,C’, D’) are used instead of (A, B,C, D). A lengthy
but straightforward calculation shows that

A2+ D? , 24D B2+ (7 2BC

! ! !
A N B = R C —N D' = R (7.122)
where N = (A+ D)2+ (B+C)? is the probability that Alice and Bob obtain
coinciding outcomes in the measurement of the target qubits. Note that
map (7.122) is non-linear as a consequence of the strong nonlinearity of the
measurement process. The fidelity after the purification procedure is given
by f=A" = (¢T|p/45l¢T). This quantity measures the probability that the
control qubits would pass a test for being in the state |¢T). Map (7.122) can
be iterated and we wish to drive the fidelity to unity. It is possible to prove
(see Macchiavello, 1998) that this map converges to the target point A =1,
B =C = D =0 for all initial states (7.121) with A > %. This means that,
when this condition is satisfied and a sufficiently large number of initial pairs
is available, Alice and Bob can distill asymptotically pure EPR pairs. Note
that the quantum privacy amplification procedure is rather wasteful since
at least half of the pairs (the target pairs) are lost at every iteration. This
means that to extract one pair close to the ideal EPR state after n steps,
we need at least 2™ mixed pairs at the beginning. However, this number
can be significantly larger since pairs must be discarded when Alice and
Bob obtain different measurement outcomes. We therefore compute the
survival probability P(n), measuring the probability that an n-step QPA
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protocol is successful. More precisely, if p; is the probability that Alice and
Bob obtain coinciding outcomes at step i, we have

P(n) = ]I v (7.123)

The efficiency &(n) of the algorithm is given by the number of pure EPR
pairs obtained divided by the number of initial impure EPR pairs. We have
P(n)

) = —-

Both the fidelity and the survival probability are shown in Fig. 7.16. The
different curves of this figure correspond to values of the intrusion parameter
from f, = 0.05 (weak intrusion) to f, = 0.95 (strong intrusion). It can be
seen that the convergence of the QPA protocol is fast: the fidelity deviates
from the ideal case f = 1 by less than 10~7 in no more than n = 6 map

(7.124)

iterations. Moreover, the survival probability is quite high: it saturates to
Py = lim,—o P(n) = 0.60 for f, = 0.95, P, = 0.94 for f, = 0.5 and
Py =0.9995 for f, = 0.05.

It is interesting to consider the effects of noisy apparatus on the ef-
ficiency of the quantum privacy amplification protocol. For the sake of
simplicity we limit ourselves to consider errors affecting only a single qubit.
As we have seen in Sec. 6.1.1, we need 12 parameters to characterize a
generic quantum operation acting on a two-level system. Each parameter
describes a particular noise channel (such as bit flip, phase flip, amplitude
damping, ...). It is interesting to point out that the sensitivity of the
quantum privacy protocol strongly depends on the kind of noise. To give a
concrete example, we show in Fig. 7.17 the deviation 1 — f of the fidelity
from the ideal value f = 1 as a function of the noise strength e. Data
are obtained after n = 5 iterations of the quantum privacy amplification
protocol for the case of strong intrusion by Eve (f, = 0.95). We consider
the bit-flip channel (with sine = || in Eq. (6.28)), the phase-flip channel
(sine = [y[ in Eq. (6.31)) and the amplitude-damping channels (sine = /p
in Eq. (6.44)). Figure 7.17 is obtained assuming that noise acts on the top
qubit of Fig. 7.15 after the U-gate (note, however, that similar curves are
obtained when noise acts instead on one of the three remaining qubits). In
the noiseless case we start from 1 — f = 1.57 x 10~! and improve the fidelity
to 1— f = 8.20 x 1076 after n = 5 iterations of the quantum privacy ampli-
fication protocol. Even though all noise channels degrade the performance
of the protocol, the level of noise that can be safely tolerated strongly de-



506 Principles of Quantum Computation and Information. II

10° ‘
107
107
10°
107
10°
10°°
107
10°

1-f

HRRRLL RLRRLLL IR IR B L] ‘,“””‘\"““”
v vl

1 ==

\
09 [ \\ !
\
n 081 N\ |
\
0.7 ’ \ 7

06 - S

0.5 : : :
0 2

Fig. 7.16 The deviation 1 — f of the fidelity f from the ideal case f = 1 (top) and
survival probability P (bottom) as a function of the number of iterations n of map
(7.122). The different curves correspond to the intrusion parameter fo = 0.95 (dashed
line), 0.5 (dot-dashed line) and 0.05 (solid line).

pends on the specific channel. For instance, it is clear from Fig. 7.17 that
the protocol is much more resilient to bit-flip and amplitude-damping errors
than to phase-flip errors.

7.12 * Quantum channels with memory

It is interesting to consider the transmission of information through quan-
tum channels with memory; that is, channels in which correlated noise acts
on consecutive uses. This situation occurs in real physical quantum chan-
nels, provided the noise is correlated on a time scale larger than the time
separation between consecutive uses of the channel. In quantum compu-
tation, time correlated noise is important in situations, such as solid state
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107

Fig. 7.17 The deviation 1 — f of the fidelity f from the ideal case f = 1 as a function
of the noise strength e, after n = 5 steps of the quantum privacy amplification protocol,
for fo = 0.95, bit-flip (circles), phase-flip (squares) and amplitude-damping (triangles)
channels. The figure is taken from Benenti et al. (2006).

qubits, in which noise has components at frequencies much smaller than
the time scales of interest for the system dynamics (we say that in this case
the environment is non-Markovian).

In this section we consider the case of two consecutive uses of a channel
with partial memory, following a model introduced by Macchiavello and
Palma (2002). Each use of the channel corresponds to the transmission of
a qubit and the action of the channel is described by the Kraus operators
E,, satisfying >, E;Ek = I. In particular, we assume that

E, = /Pror, (7.125)

with i = 0,2,y,2, 0o = I and ), pr = 1. If the state p is sent by Alice
through the channel, then Bob receives the state

p, = Z Eka]]; = PopP + Pa0zp0x + Pyoypoy + Pz0:p0 . (7-126)
k

Noise has therefore induced a rotation through an angle = about axis z, y, z
of the Bloch sphere with probability ps,py,p. or left the state unchanged,
with probability pg. In the case of two uses of the channel, we assume that
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the initial two-qubit density matrix p is mapped onto

P = EnmpE],,. (7.127)
k1,k2

where the Kraus operators have the form

Eriky = /PhikzOki Ok (7.128)

with 37, 4 E,Zl,@ Bk, = I ® 1, implying >, prk, = 1. The two
limiting cases of memoryless and perfectly correlated channels are described
by

El(c?l)cz = V/Pki\/PkoOky1 0k, (7129&)

and
El(ci)kz = /Pk1Oky Ok Oky iz » (7.129D)
respectively. An intermediate case is described by the Kraus operators
El(v?kg = \/pkl (1 — )pry + 10k, k| Oy Oy - (7.130)

This corresponds t0 pr,ky = Pk Phslkys With pryje, = (1 — p)pry + 1k, &, -
This means that the channels has partial memory: with probability p the
same rotation is applied to both qubits, whereas with probability 1 — u
the two rotations are uncorrelated. Hence, the parameter p describes the
degree of correlation of the channel.

In the following we shall consider the depolarizing channel (pg = 1 — p,
Pe = py = p. = £) and assume that Alice sends Bob pure orthogonal
quantum states drawn with equal a priori probabilities m; = % (i=1,...,4)
from the ensemble {[t)1),[12), [t3),[14)}, where

|1) = cosB|00) + sin ]11), |1h2) = sinB|00) — cosB|11),

. , (7.131)
|ths) = cos@|01) 4 sin 0|10}, [1h4) = sinB|01) — cos 0|10).

Note that these states range from separable (§ = 0) to maximally en-
tangled (0 = 7). We shall maximize, as a function of 6, the Holevo in-
formation (see Sec. 5.11.1) x = S(p') — >, mS(p}), where p' = >, mpl,
;= Ekhkz EklkzpiElzle and p; = |[¢;)(1;|. We shall show that there ex-
ists a memory threshold p; above which the Holevo information is maximal
when maximally entangled (Bell) states are transmitted. This demonstrates
that the transmission of classical information may be enhanced by sending

entangled states.
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For this purpose, it is useful to write the input two-qubit as follows:

pi = %(I®I+I®Za,§i)ak + Zﬁg)ak QI+ Zv,i?ak ®al), (7.132)
k k ki

where af) = Tr[p;(I® o)), B = Trlps(on @ I)] and 7y = Tr[pi(ox © 01)].
The input state p; reads

p1 = %[I@I—FCOSQG(I@OZ—I—UZ®I)+O'Z®UZ
+sin26(0, ® 0, — 0y ® 7y)]. (7.133)

It can be checked by direct computation that

(“)T _
ZEkﬂQI@I k1k2_1®1a
k1,k2
Z Ekl kz I ® 0-1 I(c?l)c]; nl ® o,
k1,k2
> B i ® DB = oo,
k1,k2

1 2
Z Ek1k2 0i ® 0j) I(c?l)cz N0 ® oy,
k1,k2

(7.134)

where 17 = 1 — 3p is the so-called shrinking factor (see Eq. (6.41)). We also
obtain

S B (e DB, = T,

k1,k2

> B.Ueo)ES, = nl @,

k1,k2

(c) (ot _

Z By, (0@ DEG, = noi @1,

k1,k2
Z El(cj)kg Uz X UJ)El(cj)k]; = 61‘]’01' X 0j —+ (]. — 5ij)770i X 0.
k1,k2

(7.135)

Taking into account (7.134) and (7.135), we can see that the state p; is
transformed by the depolarizing channel with partial memory (7.130) into
the output state

+ [+ 1= p)n®][o: ® 0. +5sin20(0, ® 0, — 0y @ 7y)] } (7.136)
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The eigenvalues of this density matrix are
Mg = 3(1=p)(1=n%
%{1+u+n2(1—u) (7.137)

+ 2\/772 cos?(20) + [n?(1 — p) + p)? sin2(29)}.

Ag4 =

The same eigenvalues are obtained for the other output states pf, ph, ph.
As A1 and A2 do not depend on 6, the von Neumann entropy S(p;) (i =
1,...,4) is minimized (as a function of §) when the term under the square
root in the expression for A3 and A4 is maximum. Moreover, we have
P = 1(pi+ph+ps+p,) = 1(I®I), so that S(p’) = 2. Therefore, the Holevo
information x = S(p’) — 13, S(pi) = 2 — S(p}) is maximal for separable
states (6 = 0) when n* > [n?(1 — p) 4+ p]? and for Bell states (§ = %) when
n? < [n*(1 — p) + p)?. This latter condition can be equivalently written as

> e = (7.138)

1+
Therefore, for states of the form (7.131) the Holevo information is maximal
for separable states when u < p; and for Bell states when p > p;. At
the threshold value g = py, the same Holevo information is obtained for
any value of ¢ in (7.131). The Holevo information is shown in Fig. 7.18
as a function of 0, for different values of the parameter p. The different
behaviour below and above the threshold p; is evident. Note that, for a
perfectly correlated noise channel (¢ = 1) we have £ = 2 for Bell states.
Indeed, in this case noise does not affect the Bell states: p; = p;, and
therefore S(p}) = S(p;) = 0.

7.13 A guide to the bibliography

Quantum error correction was invented by Shor (1995) and Steane (1996a).
The five-qubit code is discussed in Laflamme et al. (1996) and Bennett et
al. (1996¢). The CSS codes were developed by Calderbank and Shor (1996)
and Steane (1996b). Tutorials on quantum error correction are Gottesman
(2000), Knill et al. (2002) and Steane (2006). A very readable introduction
is Preskill (1999).

A review on decoherence-free subspaces is Lidar and Whaley (2003).
Other useful references that can be used to enter the literature are Palma
et al. (1996), Zanardi and Rasetti (1998), Lidar et al. (1998), Lidar et al.
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Fig. 7.18 Holevo information x as a function of the parameter 6, for n = % and, from

bottom to top, p = 0,0.2,0.4,0.6,0.8,1. The function x(0) has periodicity 7/2. At
= put = 0.4, x is independent of 6.

(2000), Beige et al. (2000) and Alber et al. (2001b). A useful reference
on the link between the quantum Zeno and decoherence-free subspaces is
Facchi et al. (2004). Both passive quantum error-avoiding codes and active
quantum error correction can be treated in a unified picture based on the
so-called noiseless subsystems, see Knill et al. (2000) and Viola et al. (2001).
A review on fault-tolerant quantum computation is Preskill (1998b).
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Chapter 8

First Experimental Implementations

The great challenge of quantum computation is to experimentally realize a
large scale quantum computer. The requirements that must be fulfilled to
achieve this imposing objective are summarized in DiVincenzo (2000):

1. A scalable system with well characterized qubits.

2. The ability to initialize (‘reset’) the state of the qubits to a fiducial state
(such as |0---0)).

3. Long significant decoherence times, much longer than the gate operation
time.

4. An experimentally feasible universal set of quantum gates.

5. A high-fidelity readout method.

It should be remarked that these requirements are to some extent con-
flicting: we desire the quantum computer to be well isolated from the en-
vironment to preserve its coherence and at the same time we must interact
with it strongly to prepare the initial state, realize the desired unitary evolu-
tion and measure the final state. The problem here is that external control
operations typically introduce noise into the computer, thus disturbing the
programmed coherent evolution. An important question is how large should
the ratio be between the decoherence time 74 and the “clock time” of the
quantum computer; that is, the time 7, for the execution of a quantum
gate. The answer is that the ratio 74/7, should be large enough to allow
quantum error correction. As discussed in Sec. 7.10.3, the threshold value
for fault-tolerant quantum computation depends on the characteristics of
the quantum hardware. However, optimistic estimates require 74/7, > 104,
an extremely demanding requirement, corresponding to less than one error
in 10* quantum gate operations.

513
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The five requirements above are sufficient for quantum computation.
However, we are also interested in the implementation of quantum commu-
nication protocols. For this purpose, two more items must be added to the
list of requirements:

1. The ability to interconvert “stationary” and “flying” qubits.
2. Faithful transmission of flying qubits between specified locations.

Using the terms “stationary” and “flying” qubits we emphasize the fact
that the physical systems (in practice, photons) used to transmit qubits
from place to place are very different from the qubits used for reliable local
computation (for instance, two-level atoms or ions). The development of
interfaces between quantum information carriers and quantum information
storage and processors is an important objective in the development of
quantum technologies. On the other hand, the last requirement alone is
sufficient for quantum cryptography, which deals with one qubit (or one
Bell state) at a time and not with complex many-qubit systems as in the
case of quantum computation.

In this chapter, we shall discuss the first experimental realizations of few-
qubit quantum computers in different physical systems (nuclear magnetic
resonance quantum processors, cavity quantum electrodynamics, trapped
ions and solid-state qubits) as well as quantum teleportation and quantum
cryptography with photons. We shall not dwell on the technical aspects of
the implementations but present instead the basic physical ideas underlying
the development of these first quantum machines.

8.1 NMR quantum computation

In the field of nuclear magnetic resonance (NMR) over the last few decades
sophisticated techniques have been developed to manipulate and detect nu-
clear spin states using both static and oscillating magnetic fields simulta-
neously. These techniques have been used, for instance, to study structural
properties of molecules and even biological samples. In the liquid state
NMR quantum computation controlled quantum logic operations are per-
formed over a system of spin—% nuclei (the qubits) of molecules in solution.
This kind of quantum computation is very different from the other imple-
mentations, which we shall discuss later in this chapter, for the following
main reasons:
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1. Nuclear magnetic moments are small and therefore we must average over
a large number of molecules to detect a (magnetization) signal (typically
~ 10'® molecules in solution are used in NMR quantum computation).

2. We work (at room temperature) on highly mixed (thermal) states, not
on pure states.

3. The interaction between qubits (the nuclear spins) is never switched off,
so that the evolution due to undesired couplings must be removed by
means of appropriate “refocusing” techniques.

As we shall see in this section, the fact that we are working with mixed
states implies that the signal-to-noise ratio drops exponentially with the
number of qubits. Therefore, liquid-state NMR quantum computation is
not scalable. Nevertheless, such an implementation is very important for
at least two reasons:

(i) Tt has allowed the experimental demonstration of quantum algorithms
with, so far, up to seven qubits and a number of quantum gates (up
to O(10?%)) still out of reach of other implementations of quantum
computers.

(ii) Many sophisticated quantum control techniques developed in NMR
(such as refocusing and composite pulses) are being used by other
implementations.

8.1.1 The system Hamiltonian

A spin—% nucleus in a static magnetic field By evolves according to the
Hamiltonian Hy = —p - Bg = —vS - By, where v is the gyromagnetic
ratio of the nucleus and p = S its magnetic moment, S = %ha‘ being
the spin operator. The energy difference between the two spin states (the
eigenstates |0) and |1) of o) is fuwy, where wy = —vBy is the Larmor
frequency. For instance, a proton in a magnetic field of 12T has a Larmor
frequency of approximately 500 MHz; that is, we are in the radiofrequency
(RF) range. We can manipulate the state of this spin—% nucleus by means of
an electromagnetic field B; which oscillates in the plane perpendicular to
the direction of By at resonant (radio)frequency w = wp (see Sec. 3.16.1).
This system provides a physical representation of a qubit.

A quantum register is made of several (spin-3) atomic nuclei (the qubits)
in a molecule. The qubits can be addressed separately by radiofrequency
fields if the resonant frequencies are different. This is the case when the
qubits are nuclei of different chemical elements (heteronuclear spins) as



516 Principles of Quantum Computation and Information. II

they have distinct values of gyromagnetic ratio. In a molecule atomic nuclei
of the same chemical element (homonuclear spins) can also have different
Larmor frequencies since the partial shielding of the magnetic field By by
the electrons surrounding the nuclei depends on the electronic environment
of each nucleus. Therefore, asymmetries in the molecular structure also lead
to different Larmor frequencies for homonuclear spins. We can write the
non-interacting Hamiltonian for an n-qubit molecule in a static magnetic
field directed along z as follows:

n

Hy = =3 (1-a@)y0Byst = 3 wi?s? = 3~ fhugel, (8.1)
i=1

i=1 i=1

where the superscripts () label the qubits in the quantum register and a(?),
known as the chemical shift, measures the partial shielding of the magnetic
field acting on the i-th qubit.

Let us now consider the interactions between nuclear spins in molecules.
There are two distinct coupling mechanisms: the direct dipole—dipole in-
teraction and the indirect (electron-mediated) scalar coupling.

The magnetic dipole—dipole interaction between nuclei ¢ and j depends
on the internuclear vector r;; connecting the two nuclei and is described
by the Hamiltonian

(1) (3) . , 3 . ,

(Hd)ij = % S(z) 'S(j) - W(S(z) -rij)(S(J) -’l"ij) s (8.2)
where pg is the magnetic permeability of free space. The dipolar interaction
is rapidly averaged away in liquid state NMR, due to the fast chaotic motion
of molecules.

In the scalar coupling the interaction is mediated by the electrons shared
in the chemical bond between the atoms: a nucleus interacts with another
nucleus through the overlap of the electronic wave function with the two nu-
clei. Note that, in contrast to the dipole-dipole interaction, the scalar cou-
pling is an intramolecular coupling (between spins in the same molecule).
The Hamiltonian describing the scalar coupling (also known as J-coupling)
is

2 ) ) 2 ) ) ) ) ) .
Hy = %Zjijsm .§W) — %ZJU (S789) + SWSW 1 5§,
i<j 1<y

(8.3)

INote that the chemical shift is a very useful phenomenon for the study of the prop-
erties of molecules by means of NMR spectroscopy.



First Exzperimental Implementations 517

where J;; is the coupling strength between nuclei ¢ and j and decreases
rapidly with the number of chemical bonds separating these nuclei. When
the coupling strength 27J;; is much smaller than |w(i) — w(j)|, then the
scalar coupling reduces to

2 D ali
Hy ~ = > Ty SOSY). (8.4)

1<j

The terms proportional to Séi)Sg(gj ) and Sy) Séj ) have been neglected since
they flip the state of both spins and therefore involve an energy cost
fijw® — wU)| much larger than the coupling energy 2nhd;j.

The simplest Hamiltonian for a system of coupled nuclear spins in a
molecule is therefore

Hsys = Hy+ H; = Zw(()i)sgi)-i-%n—ZJij Sgi)Sgﬂ. (8.5)
i i<j

One- and two-qubit quantum gates can then be implemented by means of
oscillating magnetic fields, as described in Sec. 3.16.1 (see also exercise 8.1).
Note that, if the frequencies w(()i) are all different, we can address single
qubits by means of resonant pulses. The time required to resolve frequency
w(()i) from frequency w(()j ) becomes larger when the frequency separation
|w(()i) - w(()j )| is smaller. This sets limits to the speed of quantum logic gates
and, therefore, on the number of gates that can be implemented within the
decoherence time scale. It is also clear that, in the case of homonuclear
molecules, strong chemical shifts are desired.

Exercise 8.1 Consider a single nuclear spin exposed to both a static
and a time-dependent magnetic field. Such a system is described by the
Hamiltonian

H = woS, + w1 [cos(wt + ¢)S, + sin(wt + ¢)S, ], (8.6)

where the static field is directed along z and the oscillating field rotates in
the (z,y) plane at frequency w. Study the motion of the spin in a coordinate
system rotating about the z-axis at frequency w (rotating frame) (note that
the wave function [¢), in the rotating frame is related to the wave function
1) in the laboratory frame as follows: 1)), = exp(FwtS:) ).
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8.1.2 The physical apparatus

The basic structure of an apparatus for NMR quantum computation is
shown in Fig. 8.1. A magnet (usually superconducting) creates a strong
homogeneous magnetic field By (10 — 15T) directed along the z-axis and
uniform to within one part in 10° over a region of the order of 1 cm?® where
the liquid sample is placed. Two coils, with axes lying in the (z,y)-plane,
allow the generation of small radiofrequency fields along the = and y di-
rections. Omne- and two-qubit gates are implemented by means of radio-
frequency (RF) fields of appropriate amplitude, frequency, duration and
shape. Sequences of hundreds of RF pulses can be applied, the upper limit
on the time of a quantum computation being set by decoherence (typically
RF pulses are order of milliseconds long? and reliable quantum computation
is possible up to several hundred ms).

B,

PA
B, <—<% RF in
—>

SW

S 4% signal out
N A

Fig. 8.1 A schematic drawing of an NMR apparatus: By is the static polarizing
magnetic field, B; the RF magnetic field, S the sample, L1 and L2 the coils used
both to generate the RF pulses and for magnetization measurements, SW the excita-
tion/measurement switch, PA the power RF amplifier, A the signal preamplifier.

¥+

After completion of the pulse sequence, the signal generated by precess-
ing nuclei is an induction voltage (known as free induction decay) which

2Pulses that are selective for a single qubit are typically 200-500 s long, while non-
selective RF pulses are typically 10 us long.
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generates an alternating current in the same coils. The signal is then am-
plified and analyzed. Note that the readout mechanism in NMR quantum
information processing is very different from the projective von Neumann
measurements described in the previous chapters. Indeed, the system is
continuously read out and the voltage induced (by the nucleus labelled as
k in the molecules) in the two coils is given by

V(@) = Vo Te[p(ol)] (8.7)
where p(t) is the density matrix describing the state of the nucleus, the Pauli
matrices operate only on the k-th spin, and Vj is a constant depending on
the properties of the read-out apparatus. Note that this measurement does
not induce a collapse of the wave function, unlike the projective von Neu-
mann measurements. This is due to the fact that the coupling between the
magnetization of the spins and the readout apparatus is weak. A detectable
signal is nevertheless obtained since it is averaged over the large number of
molecules (O(10'%)) in the sample.

8.1.3 Quantum ensemble computation

NMR quantum computation is realized at room temperature. Therefore,
the quantum state of a nuclear spin in a molecule is highly mixed, not
pure as we have assumed so far when discussing quantum algorithms. Let
us explain how this problem can be overcome by the introduction of an
appropriate pseudo-pure state.

The initial state is at thermal equilibrium and is therefore described by
the density matrix

p = SR (8:8)

where § = kBLT (kg is Boltzmann’s constant and T' the temperature) and
Z = Trlexp(—FH)] is the partition function (a normalization factor intro-
duced in order to satisfy Tr(p) = 1).

For a single spin we have H = %hwoaz, so that the density matrix in
the {|0),|1)} basis reads

B 1 exp(—%ﬁhwo) 0
~ exp(—1Bhwo) + exp(3Bhwo) 0 exp (L Bhwo)

(8.9)

Note that the off-diagonal matrix elements of p (known as coherences) are
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equal to zero while they are non-vanishing for a generic pure quantum
state 1) = co|0) + ¢1]1) when co,¢1 # 0. The diagonal terms of p give the
probabilities of finding the spin in the state |0) and |1), as for a density
matrix in classical statistical mechanics. In typical situations Bhwq is very
small. For example, for a spin—% nucleus at room temperature and a static
magnetic field inducing a precession frequency wo /27 = 500 MHz, we have
Bhwy ~ 1075, Therefore, we can approximate the single-spin density matrix
as

R %I - —ﬁﬁonz (810)
For an n-qubit molecule, we can approximate (8.8) as follows:
o~ & (I-GH). (s.11)

The pseudo-pure state used for quantum computation is determined by the
deviation pgey of the density matrix from the identity (divided by 2™ for
normalization reason):

Pdev = p— 3w A —5=0H. (8.12)

For instance, for two non-lnteractlng qubits, whose motion is governed by
the Hamiltonian H = h( (1) 1) QI 4+ (2)1(1) ® 022)), we obtain

paov ~ —1 (Sl o) @ 1) 4 Ll 6 012)

WV +ul® 0 0 0
_ g 0w —w? 0 0
8 0 0 —(w(()l) - w(()Q)) 0

0 0 0 —(w§” +w§?)

(8.13)

In order to work with pseudo-pure states, we exploit two important
facts:

1. The quantum mechanical evolution of a system is linear, so that we can
execute several experiments and combine the results;

2. The observables measured in NMR, (spin polarizations) are traceless
and therefore not sensitive to the component 5 L of the density ma-
trix (Tr(Iagc)) =0 for o = x,y,2). We also note that this component
does not change under temporal evolution: U (t)IUT(t) = T
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There are several techniques to take advantage of the above two facts. In
the following, we limit ourselves to describe the so-called temporal labelling
(or temporal averaging). Let us consider, for instance, a two-qubit system,
initially prepared in a state described by the diagonal density matrix

pP1 = (8.14)

oS O O 2
o O o O
o o0 O O
QU O O O

where a, b, ¢, d are real non-negative numbers such that a+b+c+d = 1 (this
guarantees that Tr(p;) = 1). By an appropriate combination of generalized
CNOT gates (see Sec. 3.4) we can permute the populations in p; and obtain
the initial states

p = (8.15)

o O o &
o O o O
O Qo O
o O O O
o O O 9
O O O
o o O O
o O O O

We then perform three separate experiments starting from the initial
(highly mixed) states p1, p2 and ps and obtain the final states p;(t) =
Ut)p:UT(t) (i =1,2,3). Finally, due to the linearity of quantum mechan-
ics, we have

1000
0000
0000
0000

p1(t) + pa(t) + ps(t) = U(t) § (1 —a)l + (4a —1) Ut(t)

= (1 —a)l + (4a — 1)U (1)[00)(00|UT(t).  (8.16)

In this equation, the term (4a—1)U(¢)|00)(00|U(¢) is the pseudo-pure state
at time ¢. Since Z?:l Tr (p; (t)a((lk)) =(4a—1)Tr (U(t)|00><00|UT(t)U((1k)),
it is clear that the final outcome of the experiment is proportional to what
we would have obtained starting from the pure state |00)(00].

The main drawback of NMR quantum ensemble computation is evi-
dent from the previous analysis: assuming that p; is the density matrix
(8.13) describing two qubits at thermal equilibrium?, we obtain (4a — 1) ~

—2§—f(wél) + w(()z)). In general, the pseudo-pure states that we can derive
differ from true pure states by a proportionality factor o 2L This means

3Qubit—qubit interaction terms are not relevant for the present argument.
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that in quantum ensemble computation the signal drops exponentially with
the number of qubits.

8.1.4 Refocusing

An important feature of NMR quantum computation is that the spin—spin
interaction used to implement two-qubit gates is always present. It is there-
fore necessary to employ appropriate techniques in order to control the
effect of this interaction and to remove undesired evolution (drift term)
generated by the coupling between spins. An interesting method to achieve
this purpose, known as refocusing (or spin echo), is described in this sec-
tion. Note that many other physical systems must cope with a drift term
and spin echo techniques borrowed from NMR have already proved very
useful for this purpose (see, e.g., Collin et al., 2004) .

To illustrate refocusing, it is sufficient to consider two qubits in a
molecule, with the qubit—qubit interaction described by the Hamiltonian

Hr = acV @ 02, (8.17)

where the coupling strength « depends on the structure of the molecule.
Let Ry, (m) denote the action of a RF pulse (known as 7 pulse) rotating the
nuclear spin 1 through an angle m about the x-axis of the Bloch sphere:

Ry, (1) = exp(—z‘gag)) = —iolD. (8.18)

The evolution in a time ¢ due to the interaction term is described by the
unitary operator

Ur(t) = exp —ia—tagl) ®0® ) = cos ot I —isin ot oM @0,
R R R
(8.19)

where the last equality follows from Eq. (3.28). The evolution U;(t) can
be removed if two refocusing pulses Ry, () are applied at time 0 and %
Indeed, we have (see exercise 8.2)

U, (%) Ry, (m)U7 (%) Ro (m) = I (8.20)

Exercise 8.2 Check Eq. (8.20).

Exercise 8.3 Find an appropriate spin-echo sequence to eliminate the
dynamical evolution due to the single qubit Hamiltonian H = %woaz.
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Exercise 8.4 Find an appropriate sequence of pulses for the implemen-
tation of a CNOT gate in a two-qubit system whose evolution is governed
by the Hamiltonian

H = h(wél)agl) + w(()Q)crgQ)) + i7h JiooV @ 02, (8.21)

1
2 z

8.1.5 Demonstration of quantum algorithms

Many quantum algorithms have been implemented using room temperature
liquid state NMR techniques with 3—7 qubits, from Grover’s to Deutsch—
Jozsa and Shor’s algorithms, including quantum Fourier transform, telepor-
tation, adiabatic quantum optimization, quantum error correction, concate-
nated codes, decoherence-free subspaces, noiseless subsystems and quantum
simulation. Control methods on a 12-qubit system have been recently re-
ported in Negrevergne et al. (2006). So far, no other implementation of a
quantum processor has been able to produce similar results. In this section,
we briefly describe three relevant experiments.

Quantum Fourier transform. This has been implemented (Weinstein et
al., 2001) via NMR using the three 1*C nuclei of alanine molecules as qubits
(see Fig. 8.2).% Tt is clearly seen from Fig. 8.2 that the three carbon atoms
have very different local chemical environments. The resulting chemical
shifts (|w(()i) —w(()j )| between 2.6 and 12 kHz) thus permit resonant addressing
of single qubits.

0
H I
HO ® OMH
C O

HO On

Fig. 8.2 The structure of the alanine molecule used in the implementation of the quan-
tum Fourier transform. The three qubits are the carbon nuclei.

4A complete characterization of the experimentally determined superoperator in this
three-qubit quantum Fourier transform is provided in Weinstein et al. (2004).
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The experiment looks for the periodicity of the state

[y = 3 (]000) +(010) + [100) + [110)) = 5 (|0) + |2) + [4) + |6))
= 75 (10)+11)) ® 75 (10) +11)) © [0), (8.22)

prepared by means of two Hadamard gates H applied to the initial (pseudo-
pure) state |000) (|¢) = (H ® H ® I)|000)). Therefore, this experiment
demonstrates not only the possibility to implement the quantum Fourier
transform but also the capability of NMR quantum computation to prepare
non-trivial initial states. The quantum Fourier transform is then imple-
mented by means of three Hadamard and three controlled phase-shift gates
(see Sec. 3.11). Finally, one can obtain the correct order for the qubits by
means of three SWAP gates or simply by relabelling the qubits.

In order to measure the accuracy with which the QFT had been per-
formed, the following quantity was evaluated:

Tr (pzlev,exp)
Tr (p(Qiev,in)

_ Tr (pdev,thpdev,exp)
\/Tl" (p(Qiev,th) \/Tl" (p(Qiev,exp)

where pdev.th and pdev,exp represent he deviation of the theoretically ex-

pected and experimentally measured density matrices from the identity

term (more precisely, from QL) Note that pgev,th = Ush Pdev,in Ujh, where

Usin is the theoretical evolution operator for the quantum Fourier transform

C

, (8.23)

algorithm, and pgev,in is the experimentally obtained initial pseudo-pure
state. Note that the first term in (8.23) measures the correlation between
Pdev,exp ad pdey.th, While the term under square root weights the reduction
in signal over the course of the experiment. The theoretical and experimen-
tal deviation density matrices pdev,th and pdev,exp are totally correlated if
C =1, while the case of complete lack of correlation corresponds to C' = 0.
The accuracy of the implementation of Weinstein et al. (2001) is 80% if
SWAP gates are not included and 62% with SWAP gates. Finally, an accu-
racy of 87% was obtained (without SWAP gates) starting from a thermal
initial state. In this case the accuracy is higher because there is no initial
stage for the preparation of a special input state. The implementation of
the quantum Fourier transform is particularly important because it is a key
ingredient of exponentially efficient quantum algorithms, such as factoring
and quantum simulations.

Shor’s algorithm. The most complex quantum algorithm realized to date
is the demonstration of Shor’s algorithm using a seven-qubit molecule ma-
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nipulated with NMR techniques (Vandersypen et al., 2001). The simplest
instance of Shor’s algorithm was reported: factorization of N = 15 into its
prime factors 3 and 5. The structure of the molecule used for this experi-
ment is shown in Fig. 8.3. It contains five F and two 3C spin—% nuclei as
qubits. Note that this molecule was specially synthesized in such a manner
that the seven resonant frequencies w(()z) were very well separated (a static
magnetic field of 11.7 T was applied). This assures that each qubit can be
addressed independently. The seven spins interact pairwise via the scalar
J-coupling, described by the Hamiltonian H; = 2% Ei<j Jingl)ng).

Fig. 8.3 The structure of the molecule used in the implementation of Shor’s algorithm.
The seven qubits are labelled from 1 to 7. The figure is reprinted with permission from
Vandersypen et al. (2001). Copyright (2001) by Macmillan Publishers Ltd.

The quantum circuit for Shor’s algorithm is shown in Fig. 8.4. The room
temperature seven-qubits statistical mixture describing the initial state is
converted into a seven-qubit pseudo-pure state by means of the temporal
averaging technique. The sequence of quantum gates is realized by apply-
ing approximately 300 radiofrequency pulses, at seven different frequencies
(from w(()l) to operate single-qubit gates on spin 1 up to w(()7) to operate on
spin 7). Pulses are separated by time intervals of free evolution under the
system Hamiltonian (8.5). This Hamiltonian includes interaction terms,
which are necessary in order to implement Shor’s quantum algorithm (two-
qubit quantum gates are needed in both the modular exponentiation and
the inverse quantum Fourier transform). After completion of the sequence
of RF pulses the state of the first three qubits is measured using NMR
spectroscopy. As a result, the prime factors 3 and 5 are unambiguously
derived from the output spectrum.
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Fig. 8.4 A quantum circuit for Shor’s algorithm. The preparation of the initial pseudo-
pure state by means of temporal averaging is followed by Hadamard gates, modular
exponentiation, inverse quantum Fourier transform and measurement. The gates shown
in dotted lines can be replaced by simpler gates for the particular initial state used in
the experiment. The figure is reprinted with permission from Vandersypen et al. (2001).
Copyright (2001) by Macmillan Publishers Ltd.

The quantum sawtooth map. The implementation of the quantum saw-
tooth map (see Sec. 3.15.3) on a three-qubit liquid state NMR quantum
processor has recently been reported (Henry et al., 2005). The quantum
hardware is a solution of tris(trimethylsilyl)silane-acetylene molecules, the
three qubits being a hydrogen nucleus and two '3C nuclei. Experiments
were performed in a 9.4 T magnetic field, where the resonant frequencies
for the carbon qubits were separated by 1.201kHz due to the chemical
shift. The scalar couplings J;; were of the order of 100 Hz. Pulse sequences
were optimized accounting for inhomogeneities in the RF field. The quan-
tum simulation of an iteration of the quantum sawtooth map took approxi-
mately 0.1s and up to 4 map steps were simulated in the regime of quantum
localization.

The results plotted in Fig. 8.5 show the experimentally measured prob-
ability distribution (over the momentum basis) together with the ideal,
numerically computed distribution after one and two map iterations. It
can be seen that the region around the central (localization) peak does
not broaden significantly while the tails are more sensitive to the effects of
imperfections and decoherence (which completely destroy localization in ap-
proximately four map iterations). The results are interesting because quan-
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tum localization is a very fragile quantum interference effect and therefore
its observation demonstrates once more that a very sophisticated degree of
coherent quantum control has been achieved in NMR quantum processors.

10

probability of momentum state j

— experiment iteration 1
—&— experiment iteration 2
— —&- ideal iteration 1
-0~ ideal iteration 2

W

1073 : : :
-4 -3 -2 -1 0 1 2 3
Momentum eigenstate j

Fig. 8.5 Experimentally measured and ideal probability distributions after one and two
iterations of the quantum sawtooth map. The figure is taken from Henry et al. (2005).

Furthermore, the degree of stability of the localization effect can be
used as a test bed both for measuring the degree of quantum control and
for studying the importance of the different noise mechanisms affecting the
system. Errors can be classified into three main categories:

1. Coherent errors: the evolution is unitary but governed by a unitary
operator U, which differs from the ideal operator U. For instance, unde-
sired spin—spin couplings as well as the action of the system Hamiltonian
during a RF pulse generate coherent errors.

2. Incoherent errors: the system Hamiltonian varies across the sample (for
instance, due to spatial inhomogeneities of the RF field), so that the vari-
ous members of the ensemble (the molecules) evolve differently from each
other. Even though the single molecule evolves unitarily (no entangle-
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ment with the environment is generated), the evolution of the ensemble
averaged density matrix is not unitary. This kind of error is typical of
quantum ensemble computation.

3. Decoherent errors: these errors arise from the coupling between the
qubits and the environment. Note that in this case the evolution is
non-unitary even for a single molecule.

Coherent errors delocalize the system by introducing transitions between
momentum eigenstates. Decoherent errors are modelled by quantum opera-
tions, with the relaxation (77) and dephasing (7%) time scales for each qubit
based on experimental data.® The decoherence time scale is of the order of
1s, much larger than the time scale (approximately 0.1s) for the implemen-
tation of one step of the quantum sawtooth map. The comparison between
the numerical simulation of the various error sources and the experiment
is shown in Fig. 8.6. Note that, when coherent, incoherent and decoherent
errors are taken into account, the numerical simulations reproduce the ex-
perimental data very well, thus indicating that the noise model is accurate.
Moreover, the relative importance of the individual noise mechanisms can
be seen. It appears that localization is first destroyed by incoherent errors
due to inhomogeneities in the RF field.

8.2 Cavity quantum electrodynamics

The wording cavity quantum electrodynamics (CQED) denotes a set of
techniques allowing the interaction of single atoms and single photons in-
side a resonating cavity. Here we focus on experiments performed with
Rydberg atoms; that is, atoms whose valence electrons are in states with
a very large principal quantum number n. More precisely, we consider al-
kali atoms, which have a single valence electron which is highly excited up
to n ~ 20 — 50. In such conditions, the valence electron is very far from
the atomic nucleus and therefore its electric dipole moment is very high
(see Table 8.1). As a consequence, the interaction with an applied electro-
magnetic field is very high. It is therefore possible to achieve the so-called
strong-coupling regime in which the coherent evolution of a single atom
coupled to a single photon stored in a high-quality cavity overwhelms the

50f course, as explained in Sec. 5.4, a complete characterization of quantum noise for
a three-qubit system would in principle require the determination of N* — N2 = 4032
parameters, where N = 8 is the dimension of the Hilbert space.
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Fig. 8.6 The second moment ((AI)2) of the probability distribution in the ideal case,
taking into account coherent, incoherent and decoherent noise models, and in the actual
experiment. The figure is taken from Henry et al. (2005).

incoherent dissipative processes.%

This allows for atom—photon entangle-
ment to be produced before decoherence dominates. Moreover, the energy
separation F,, — E,,_1 between two consecutive atomic levels is very low
(corresponding to a frequency ~ 10 — 50 GHz, to be compared with optical
frequencies O(10'5 Hz) relevant when n ~ 1). This entails two important

consequences:

1. these (radio)frequencies are available in laboratories, so that resonant
cavities can be excited and then used to manipulate the atoms;

2. the lifetime of Rydberg atoms is very long (much longer, as shown in
Table 8.1 than for atoms at n ~ 1).

To give some relevant figures, let us note that the lifetime of a Rydberg
atom with n ~ 50 and high angular momentum ! ~ n can be as large as

6The quality factor Q is a measure of the rate at which a vibrating system dissipates
its energy (a higher @ indicates a lower rate of energy dissipation). By definition, Q is
27 times the ratio of the energy stored divided by the energy lost per cycle. For instance,
a quality factor Q ~ 3 x 108 is reported in Raimond et al. (2001).
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30 ms and the transition frequency between states with principal quantum
7 This property is very
useful as it allows one to employ resonant cavities of centimetre size, which

numbers n and n — 1 is in the microwave range.

are very convenient for the experimental manipulation.

Table 8.1 Scaling of physical quantities for Ryd-
berg states.

Physical quantity Scales as

Binding energy E, 1/n?

En — Ep_1 1/n3
Size n?
Electric dipole moment n?
Lifetime (low angular momentum) n3
Lifetime (high angular momentum) nd

Critical electric field for ionization 1/n*

The typical experimental setup for CQED experiments is sketched in
Fig. 8.7. Alkali atoms leave the oven O and are excited into the desired
Rydberg state by means of appropriately tuned laser pulses L. It is possible
to select atoms having a well defined velocity using the Doppler effect. Even
though the source emits atoms randomly, pulsed lasers allow one to select
the incoming atoms and to know the preparation time for the circular Ry-
dberg states within O(us) interval. The position of each atom flying inside
the apparatus is then known with O(mm) precision. It is therefore possi-
ble to address and control individual atoms. The prepared Rydberg atom
crosses one or more cavities (usually, microwave superconducting cavities)
Ry, C, and Ry, resonant with the transition between two atomic levels |g)
and |e). The two cavities Ry and Rs implement microwave Rabi pulses and
are used to prepare the initial state in the desired superposition of the states
lg) and |e) and to analyze the final state, respectively. Note that the atom
can be treated as a two-level system (qubit) since it is prepared in Ry in a
superposition alg) + fle) and the cavities are resonant with the |g) < |e)
transition. The relevant Hilbert space for the atom is therefore spanned by
the {|g), |e)} basis. The cavity C' can be prepared in the vacuum state |0)
with no photons (the mean photon number can be reduced to 0.1) and can
evolve to the one-photon state |1) after interaction with the atom. Note
that the photon storage time is O(ms), much larger than the atom—cavity

"Note that the states with maximum angular momentum [ = n— 1 (known as circular
Rydberg states) are the quantum counterpart of classical circular orbits.
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interaction time, a few tens of us, thus allowing the coherent manipulation
of entangled atom—photon states. The up/down (|g)/|e)) state of the atom
is finally measured using the two detectors D, and D,: the atom is ionized
by means of a static electric-field (O(10%) V/cm) and the resulting elec-
tron is counted. This procedure is very effective as the static electric field
threshold for ionization strongly depends on the principal quantum number
n, as shown in Table 8.1. The detectors D, and D, are state selective: if
the atom is in the state |g) it is ionized by the static field in Dy, if instead
it is in |e) it is ionized by the field in D.. As an example of this technique,
the circular Rydberg states for rubidium atoms with n = 49, n = 50 and
n = 51 can be distinguished.

o
il _— — —

O L R C R, D, D,

Fig. 8.7 A sketch of a cavity quantum electrodynamics apparatus: the atoms leaving
the oven O are excited into the desired Rydberg state by pulsed lasers L, enter the
cavities Ry, C' and Ry and are finally detected using state selective field ionization in
D and Dy.

We point out that the experimental apparatus sketched in Fig. 8.7 can
be seen as the actual implementation of the theoretical procedure described
in Sec. 6.1.2 for the measurement of the quantum operation acting on a
qubit. The preparation of the initial density matrix p involves O, L and
Ry in Fig. 8.7, while the density matrix p’ obtained after interaction with
the cavity C' is analyzed through R, D. and Dy. It is therefore possible to
measure the 12 parameters determining the mapping (quantum operation)
of the single-qubit density matrix p into p'.

Note that the fields applied in R; and Rs have relaxation times O(ns)
and therefore do not produce any entanglement between the atom and the
microwave radiation field. Indeed, the time required to induce |g) < |e)
Rabi oscillations is of the order of 10 us, much longer than the relaxation
time. Hence, we describe the electromagnetic fields in Ry and R as classical
fields. It can be shown (see exercise 8.5) that the action of such a field on
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a two-level atoms is described, in the {|g), |e)} basis, by the unitary matrix

[4 _iel? qip @
COS 3 ie'? sin g (8.24)
—ie~® gin ¢ cos 2 ’
2 2

where 0 is proportional to the amplitude of the radiation field and to the
atom—field interaction time while ¢ is the phase of the field. Since U =
cos g I- ising (n - o), where the unit vector n = (cos ¢, —sin ¢, 0) and
o = (04,04,05), then U represents a rotation of the Bloch sphere through
an angle 6 about the axis directed along n (see Eq. (3.38)). This axis lies in
the (z,y) plane of the Bloch sphere and forms an angle —¢ with the z-axis.
Starting from a given initial state, say |¢)g) = |g), we can obtain the generic
state of a qubit, |¢)) = Uly) = cos § |g) —ie™* sin & |e). Note that, when
the atom interacts with a classical field, its state remains pure.

Exercise 8.5 The evolution of a single alkali atom in a classical electro-
magnetic field is governed, in the dipole approximation, by the Schrédinger
equation

o d
ih—u(®)) (Ho + Hyp)[¥(t)),

2
8.25
HO = _2pm +V(T), ( )
H; = —ezE(t),

where the first term in Hy is the kinetic energy of the valence electron of the
atom and V' (r) the effective potential acting on such electron, generated by
the atomic nucleus and the other electrons, and H; is due to the interaction
of the electron with the electric field generated by a wave linearly polarized
along the z-axis. Solve the Schrodinger equation when only two atomic
levels are relevant and the electric field is given by

E(t) = Egcos(wt + ). (8.26)
In particular, derive (8.24).

The Jaynes—Cummings model. The electromagnetic field in the cavity
C must be considered as a quantum object. The interaction between a
two-level atom and a single mode of the quantized electromagnetic field is
modelled by the Jaynes—Cummings Hamiltonian

H = §hweo. + hw (aTa +3)+Aoya+ No_al, (8.27)
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where the Pauli matrices are written in {|e), |g)} basis spanning the Hilbert
space associated with the two-level atom, oy = 1(o, + ioy) and o_ =
2(op — ioy) = Ui, hw, = E. — E, is the difference between the energies
of the atomic levels |g) and |e), hw the single-photon energy, fw (afa + 3)
the Hamiltonian describing a single mode of the field, including the zero
point energy %hw, a! and a the photon creation and annihilation operators.
Note that the raising and lowering operators o4 and o_ are such that
oilg) = le), oxle) =0, 0_]|g) =0, o_le) = |g). On the other hand, the
operators al and a create and annihilate a photon: af|n) = /n + 1|n + 1),
aln) = /njn — 1) (see exercise 8.6), n being the number of photons in the
cavity. Therefore, the operator o_al de-excites the atom (|e) — |g)) and
creates a photon by means of the operator af while o a represents the
excitation of the atom by absorption of a photon.® A very important point
is that at resonance (w = w,) there are coherent Rabi oscillations between
the atom—cavity states |g,n) (i.e., atomic state |g) and n photons in the
cavity) and |e,n — 1). The frequency of these oscillations is proportional to

the coupling constant |A| and to \/n (see exercise 8.7).

Exercise 8.6 Let us consider the harmonic oscillator, whose Hamiltonian
reads

»? mw2z2

H = —
2m+ 2

(8.28)

where the operator p = —ih(d/dx) and [z,p] = ih. The stationary states
of the harmonic oscillator are the eigenfunctions |n) of the Hamiltonian
operator (8.28); that is,

Hn) = Ey,|n). (8.29)
As shown in quantum mechanics textbooks, the eigenvalues read
Ey = hw(n+ 1) (8.30)
and the corresponding stationary states are given by

bn(z) = (2ln) = (%)1/4mHn (@x) exp(—%m—;}x2>,

(8.31)

8The Jaynes—-Cummings model (8.27) is written in the rotating frame approximation
since terms proportional to o_a and o'_;_aJr are not included. See exercise 8.5 on the
significance of the rotating wave approximation.
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where H,, denotes the n-th Hermite polynomial.” Note that the energy of
the ground state, Fy = %hw, is known as the zero-point energy and can
be seen as a consequence of the Heisenberg principle. Indeed, it can be
seen analogously to exercise 6.15 that the product of the uncertainties Ax
and Ap is equal to %, namely the minimum uncertainty permitted by the
Heisenberg principle.

Hamiltonian (8.28) can also be written as

H = hw(a'a+3), (8.32)
where

1
a = ———(mwzx + ip), al = (mwz — ip). (8.33)

vV 2mhw vV 2mhw

Note that [a,a] = 1. Show that the action of a and a' on the stationary
state |n) is as follows:

aln) = vn|n —1), a'ln) = Vn+1|n+1). (8.34)

It follows that the number operator N = a'a has the property afaln) =
n|n); that is, N has the same eigenstates as H.

Exercise 8.7 Solve the Schrodinger equation for the Jaynes—Cummings

model.10

Exercise 8.8 Discuss the temporal evolution of the atom—field entangle-
ment for the Jaynes—Cummings model at resonance (w = w,), when the
initial state is |¢o) = |g, n).

Exercise 8.9 The coherent states of the harmonic oscillator are the eigen-
states |a) of the annihilation operator a; that is,

ala) = ala), a € C. (8.35)
9The Hermite polynomials satisfy the recurrence relation

Hn+1(§) = 2§H7l(§) - 2an71(§)

and the first few Hermite polynomials are
Ho(§) =1, Hi(§) = 26, Hz(§) = 46% -2, Hs(¢) = 8¢” —12¢,

Another useful relation is J
dngn(f) = 2nHp—1(§).

10Note that the Jaynes-Cummings model is one of the few exactly solvable models in
quantum field theory.
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(i) Show that the representation of a coherent state in the Fock basis (that
is, in the basis of the eigenstates of the number operator) is given by

) = e~ dlal § 20y (8.36)

(i) Show that the mean number of photons in the coherent state |a) is given
by n = (a|Nl|a) = (a]a’ala) = |a|? while the root mean square deviation
in the photon number An = /f.

(iil) Discuss the temporal evolution of a coherent state. In particular, show
that at all times it remains a minimum uncertainty wave packet and that
the temporal evolution of the mean values of position and momentum are
the same as for a classical particle.

Exercise 8.10 Discuss the temporal evolution of the state of a two-level
atom interacting with a single mode of the electromagnetic field according
to the resonant Jaynes—Cummings model, when the initial state is [1)g) =
lg, ), with |a) coherent state corresponding to a large average number of
photons, 7 = |a|? > 1. In particular, study the temporal evolution of the
Bloch-sphere coordinates and of the von Neumann entropy of the atomic
state.

8.2.1 Rabi oscillations

As we know, Rabi oscillations consist in the variation of the population of
levels (the eigenstates of the system Hamiltonian) induced by an external
field, which can be either classical or quantized. The theory of Rabi oscil-
lations is developed in exercises 8.5 and 8.7. Here we are interested in the
case in which the electromagnetic field is quantized, so that quantum infor-
mation can be transferred from the atom to the field and vice versa. This
is possible in CQED experiments where a two-level atom interacts with a
cavity field prepared with a given small number of photons. Such states |n)
with fixed photon number are known as Fock states or number states. In
particular, the ground state |0) of the quantum field is the so-called vacuum
state, in which the photon number is equal to zero.

Let us describe the experiment reported in Varcoe et al. (2000). The
setup is sketched in Fig. 8.8. A rubidium oven provides two collimated
atomic beams. The first (main beam) is sent to the microwave cavity while
the second (reference beam) is used as a frequency reference to tune the
laser to an atomic resonance. Rubidium (8°Rb) atoms are excited from the
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®S51 /5 (F=3) ground state to the %P3 5 Rydberg state. Velocity selection is
obtained using the Doppler effect: the laser is at an angle of 11 degrees with
respect to the direction normal to the main atomic beam. The laser field
is locked to the 551/2 (F=3) — 63P3/2 transition of the reference beam, the
transition frequency being tuned by means of a static electric field. This
field changes the energy of the atomic levels (the Stark effect). When the
laser frequency is tuned, different atomic velocities are selected in the main
beam. It is important to select atoms of different velocities since in this
case the atom—cavity interaction time can be varied. Thus, the angle 0
of Rabi oscillations (see Eq. (8.24) and exercise 8.7) can be changed, even
though the cavity has a well defined photon number.

Rubidium oven

Stark shifting
plates Auxiliary

detector

Reference Laser

Velocity selecting
UV laser

Piezos for fine-
adjustment of the
niobium resonator

State selective
field ionisation of
Rydberg atoms

Fig. 8.8 A sketch of the experimental setup in Varcoe et al. (2000). The atoms leave the
rubidium oven and are excited to a well defined Rydberg state by means of a laser. The
atoms of the main beam interact with a superconducting niobium cavity (tuned using
two piezo translators) and are finally detected by selective field ionization. The reference
beam is used to stabilize the laser frequency to a Stark-shifted atomic resonance. The
figure is taken from Varcoe et al. (2000).

To generate a state of the cavity with a determined number of photons,
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the atoms, prepared in the excited state |e) (as usual, |g) and |e) denote
the two relevant atomic states), are injected one after the other into the
cavity, prepared in the vacuum state |0). The outgoing atoms are then
measured. If an atom is now observed in the ground state |g), we deduce
that it has emitted a photon in the cavity. If n atoms are measured in
the state |g), we conclude that the n-photon Fock state |n) of the cavity
field has been generated. Of course, the entire process must require a time
much shorter than the photon lifetime (0.35s in Varcoe et al., 2000). We
point out that the above-described generation of a Fock state can be seen
as an experimental verification of the collapse of the wave function after
the measurement. Indeed, if an excited atom interacts with the cavity
field, initially in the state |n), then in general the atom becomes entangled
with the cavity field. As shown in exercise 8.8, the atom—field state after
interaction is given by

—ie" 1 sin(|Q11(t) g, m + 1) 4 cos (| [t) e, n), (8.37)

where |€),,11] is the frequency of Rabi oscillations, ¢, 41 the field phase and ¢
the interaction time. The state selective field ionization measures the atom
in the ground state with probability p, = sin®(|Q,41[t) or in the excited
state with probability p. = cos?(|Q,+1]t). The postulate of the collapse of
the wave function tells us that after the measurement the field is left in
either the state |[n + 1) or |n). Note that in both cases the atom and the
field are no longer entangled.

Finally, a new atom prepared in |e) can be sent to the cavity to probe
the Fock state |n) by detecting Rabi oscillations, whose expected frequency
|Qn11| oc v/n + 1 (see exercise 8.7). The experimental results are shown in
Figs. 8.9 and 8.10. In Fig. 8.9 (left) the atomic inversion I = py — p. is
measured as a function of the interaction time ¢ (which can be varied by the
above described velocity selection technique). The oscillations in I show
that photon emission is a reversible process in the strong coupling CQED
regime. Ordinary photon emission occurs in free space and is irreversible
since the emitted photon escapes and is lost. On the contrary, in CQED
experiments the emitted photon remains trapped in the cavity and can be
absorbed again by the atom. If the field is not in a Fock state, then

I(t) = Can [sin® (|Qn41]t) — cos? (|Qn1]t)]

—C’an cos(2[Qp41t), (8.38)
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where p,, is the probability of finding n photons in the cavity and the factor
C accounts for the signal reduction due to dark counts. A fit of the exper-
imental data of Fig. 8.9 (left) according to Eq (8.38) gives the populations
po, p1 and po shown in Fig. 8.9 (right). A clear maximum is shown, in
correspondence to the expected Fock state. Finally, the dependence of the
Rabi frequency on the photon number n is shown in Fig. 8.10, together
with the theoretical dependence T}, = IQn+1\ x n;ﬂ
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Fig. 8.9 Rabi oscillations for the Fock states (left) and coefficients pn from the fit (8.38)
(right). From top to bottom: n = 0,1 and 2. The figure is taken from Varcoe et al.
(2000).

The results of Varcoe et al. (2000) show that it is possible to prepare
Fock states with good accuracy and to observe the interaction of single
atoms with such states. Finally, we point out that these experimental
results cannot be explained by assuming an interaction between the atoms
and a classical field. This shows that it is possible to prepare quantum
states of the electromagnetic field in macroscopic resonant cavities.

8.2.2 Entanglement generation

Let us describe a CQED experiment (Hagley et al., 1997), in which two
initially independent atoms are prepared in an entangled state. The ex-
perimental apparatus is sketched in Fig. 8.11. It fulfills very demanding
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Fig. 8.10 Dependence of the Rabi frequency, obtained from the data of Fig. 8.9, on
the photon number. The curve shows the theoretical dependence with the Rabi period
Ty, o< 1/4/n + 1. The figure is taken from Varcoe et al. (2000).

requirements:

1. The position of each atom along its trajectory is known at any time
during the experiment with an error less than 1 mm. This is obtained
by exploiting the Doppler effect for velocity selection and using pulsed
lasers to prepare the circular Rydberg states at a well defined time.

2. The angle 6 of Rabi oscillations in (8.24) can be adjusted so that Rabi
pulses with § = 7/2 or 7 can be applied when the atom crosses the
cavity. The atomic velocity can be selected so that § = 27 for a full
crossing of the cavity. By applying an electric field across the cavity at
an appropriate time, the |g) < |e) transition is abruptly tuned off res-
onance, freezing the Rabi oscillations from that time on. Hence, angles
0 < 27 and in particular 7/2 and 7 pulses can be obtained.

Atom—atom entanglement is obtained by sending two atoms, one after

the other, through the cavity. The two atoms and the cavity are initially
prepared in the state

|w’t> - |el7g270>; (839)
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Fig. 8.11 A sketch of the experimental apparatus used in Hagley et al. (1997). Ru-
bidium atoms are emitted by the rubidium oven O, velocity selected in zone V' using
lasers Ly and L and prepared by laser Lz in box B in one of the two circular Rydberg
states with principal quantum numbers 50 (state |g)) or 51 (state |e)). After leaving the
superconducting microwave cavity C, the atoms cross the analyzing cavity R, in which
classical Rabi field pulses are applied by a source S. Finally, the state of the atom is
measured by the detectors De and Dgy. The figure is reprinted with permission from
Hagley et al. (1997). Copyright (1997) by the American Physical Society.

where the index 1 refers to the first atom, the index 2 to the second and the
third quantum number gives the number of photons in the cavity, initially
in the vacuum state |0). The interaction of the first atom with the cavity
corresponds to a § = 7/2 Rabi pulse. Therefore, with probability % the
atom emits a photon and evolves into the state |g), whereas with probability
1 it remains in |e). In the first case, the cavity is left in the state |1), in
the latter it stays in |0). Therefore, the combined state of the two atoms

and the cavity is given by

|1/)/> = ﬁ(|617927 0> - |917927 1>) (840)

Note that the first atom is now maximally entangled with the cavity field,
while there is no entanglement with the second atom. The second atom
then enters the cavity and the angle 6 is set equal to 7, corresponding to
a complete population reversal (|g2,1) — |e2,0)). If instead the cavity is
in the vacuum state, the second atom stays in |g2) without affecting the
cavity field. In both cases the cavity ends up in the vacuum state and the
overall state is now given by

) = 5 (lex, 92) — lg1, €2))10). (8.41)
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Therefore, the two atoms are in a maximally entangled state, while the
cavity state |0) is factorized; that is, no atom—cavity entanglement remains.

A 7/2 pulse is then applied to both atoms and finally the two detectors
D. and D, measure the state of the two atoms. Since the EPR state
%(|61,g2> — |g1,eg)) is rotationally invariant, it can be written in the
same manner also in the basis rotated by the 7/2 pulse. Therefore, the
joint probability pge of finding the first state in |g) and the second in |e) is
%. Similarly, peg = 1/2 and pgyg = pee = 0; that is, perfect anticorrelation is
expected in the outcomes of the measurements. Experimental imperfections
such as photon losses lead to the actual probabilities p.q = 0.44, pge = 0.27,
Pgg = 0.23, pee = 0.06.

Convincing evidence of atom—atom entanglement is obtained by detun-
ing the frequency of the analyzing cavity R from the atomic resonance.
Since the two atoms cross the cavity R at different times, they experience
different phases, ¢; and ¢2, of the microwave field. As a consequence (see
exercise 8.11) the joint probabilities oscillate as a function of the phase
difference ¢1 — ¢2. We obtain

Peg = Pge = Fl1+cos(da—d1)], Pgg = Pee = Fl1—cos(d2—¢1)]. (8.42)

The phase difference ¢o — ¢; accumulated between the microwave source
and the atom is given by the AT, where A = w — w, is the detuning; that
is, the difference between the field frequency w and the Bohr frequency w,
associated with the |g) < |e) transition, while T' = 42 us is the interval
separating the times at which the two atoms reach the cavity R. The con-
ditional probabilities P.(e2/g1) and P.(ea/e1) of detecting the second atom
in |e), provided the first was measured in |g) or |e), are shown in Fig. 8.12.
Since the joint probabilities pge = p(g1)P(€2/91), Pee = p(e1)P(e2/e1) and
ple1) =plg1) = %, the theoretical expectation is

P.(ea/g1) = %[1+cos(¢2—¢1)], P.(ez/e1) = %[1—(305((;52—(;51)]. (8.43)

Oscillations in phase opposition of the conditional probabilities P.(e2/g1)
and Pe(e2/e1) with period close to 1 are indeed observed, even though the
visibility of the interference fringes is only 25% instead of the ideal value of
100%. Such visibility is too low to observe a violation of Bell’s inequalities.

Exercise 8.11 Derive Eq. (8.42).

Finally, we point out that entanglement has been established between
two atoms separated by a macroscopic distance of the order of 1 cm.
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Fig. 8.12 Conditional probabilities for detecting the second atom in the state |e), pro-
vided the first was detected in |e) or |g). The figure is reprinted with permission from
Hagley et al. (1997). Copyright (1997) by the American Physical Society.

8.2.3 The quantum phase gate

In this section, we discuss implementation of the controlled phase-shift gate
CPHASE(¢) by means of the CQED experiment reported in Rauschenbeu-
tel et al. (1999). This two-qubit gate, defined by Eq. (3.47), applies a
phase shift of angle ¢ only when both qubits are in their |1) state. We have
CPHASE(¢)|z1,x0) = exp(ipx120)|21, T0), With 1,20 = 0, 1.

A sketch of the experimental apparatus used in Rauschenbeutel et al.
(1999) is drawn in Fig. 8.13. Relevant system parameters are: (i) atomic
lifetime ~ 30ms, (ii) lifetime of the field in the cavity ~ 1ms, (iii) atom-
cavity interaction time =z 20 us, (iv) atomic position known within +1 mm,
(v) setup cooled to 1.3K.

The two qubits are realized by a single atom (the atomic levels |i) and
|g) stand for the |0) and |1) states of the qubit) and by the cavity field
(|0y and |1) Fock states). If the atom is in the state |i) or if the cavity
is in the vacuum state the atom—field state is unchanged. On the other
hand, at resonance a 27 pulse transforms |g, 1) into —|g,1). Note that the
auxiliary level |e) is used to implement this transformation since the Rabi
oscillation in the cavity is between the |g,1) and the |e, 0) states. There-
fore, a CPHASE(¢ = 7) gate is applied. As shown in Rauschenbeutel et al.
(1999), the controlled phase shift ¢ can varied in the interval [0, 27) by de-
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Fig. 8.13 A sketch of the experimental apparatus used in Rauschenbeutel et al. (1999)
to implement the controlled phase-shift gate (left) and relevant energy levels (right). The
atoms are emitted from the oven O and prepared in B in circular Rydberg states with
principal quantum number 50 (state |g)) or 51 (state |e)). The classical fields Ry and
R3 induce Rabi oscillations between the states |g) and |i) (this latter state has principal
quantum number 49). The cavity C is resonant or nearly resonant with the transition
lg) < |e) at 51.1 GHz, S is a classical source and the detector D discriminates between
the states |#), |g) and |e). The figure is reprinted with permission from Rauschenbeutel
et al. (1999). Copyright (1999) by the American Physical Society.

tuning the cavity mode from the |g) < |e) transition frequency. The action
of the CPHASE(¢) gate has been demonstrated with the atom prepared
in a superposition of the |i) and |g) states by means of the Rabi pulse Ry
and/or with the cavity prepared in a superposition of the |0) and |1) Fock
states by injecting a small coherent field in C.

Note that the controlled phase-shift gate, combined with single-qubit
gates, can be used to realize any unitary transformation in the Hilbert
space of a many-qubit system. Therefore, a universal set of quantum gates
can be realized with CQED experiments, even though the scaling of such
experiments to systems with a large number of qubits is problematic. The
most complex experiments performed so far have engineered the entan-
glement of three-qubit systems. In particular, a maximally entangled GHZ
state of two atoms and the cavity (and of three atoms, used for the readout)
has been prepared (see Raimond et al., 2001). Finally, we point out that
CQED experiments have been very successful in studying the emergence
of classical behaviour due to decoherence effects. In particular, the loss of
quantum coherence of a superposition of field states (“Schrédinger’s cat”)
due to entanglement with the environment was experimentally measured
(see Raimond et al., 2001).
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8.3 The ion-trap quantum computer

The basic idea behind the use of trapped ions for quantum computation
is to have a string of ions trapped in well controlled positions and to indi-
vidually address each ion by means of laser pulses. The ion-trap quantum
computer takes advantage of impressive experimental progress made in the
field of quantum optics, which has rendered quantum state engineering pos-
sible, i.e., on-demand preparation and manipulation of quantum states with
a very high degree of fidelity. Thanks to progress in laser technology, the
degree of control over the states of trapped ions is continuously increas-
ing, so that generation and coherent manipulation of entangled states with
several qubits (up to eight) has been achieved. In this section, we shall
first describe the main ingredients of ion-trap quantum computation, from
the Paul trap mechanism to laser cooling. After this, we shall discuss the
operations required to realize a universal set of one- and two-ion quantum
gates. Finally, we shall review experimental results showing the potential
of trapped ions in the field of quantum computation.

8.3.1 The Paul trap

In the Paul trap, ions are confined by a spatially varying time-dependent ra-
diofrequency (RF) field. We are interested in the case in which the trapped
ions line up along the trap axis (z). This is obtained by means of an
oscillating field with a quadrupole geometry in two dimensions, provid-
ing confinement along the radial direction (r = y/x2 + y2), while trapping
along the z-axis is provided by a static electric field (see figure 8.14 and
exercise 8.12).

Let us first consider a single ion in a trap. By averaging over the fast
oscillatory motion at (radio)frequency wgp, an effective harmonic potential
is obtained, with frequencies w;,w,,w, along the three principal axes of the
trap. Note that the trapping frequency w; = w, < wy, wy, so that we can
limit our considerations to motion along the z-axis. Typical experimental
parameters are trap size of approximately 1 mm, applied voltages of 100 —
500V and RF field of a few tens of MHz leading to harmonic motion of the

w

trapped ion in the z direction with frequency 5 ~ 1 — 5 MHz.

Exercise 8.12 An ion with charge ¢ and mass M is confined in a linear
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Fig. 8.14 Main figure: a schematic drawing of a linear ion trap setup with a trapped ion
string. The four blades are at high voltage (neighbouring blades with opposite potential),
oscillating at radio frequency, thus providing confinement in the radial directions. The
tip electrodes are at positive high voltage and trap the ions axially (the z direction
according to the notations used in the text). A laser addresses the ions individually and
manipulates their quantum state. The resonance fluorescence of the ions is imaged onto
a CCD (charge-coupled device) camera. Inset: the CCD image of a string of eight ions is
shown. The distance between the outer ions is approximately 70 pm. Drawing courtesy
of Rainer Blatt, Innsbruck.

trap by the quadrupolar electric potential

1 Uy

b(x,y,2;t) = I

(z 2 y2) cos(wrrt) +

bo|<

1
5 [22 —ex? —(1— e)y2] ,
with R and e geometric factors.

(i) Show that the equations of motion for the ion lead to harmonic confine-
ment along z, while for both £ = x and £ = y we have a Mathieu differential
equation, of the form

2

a2 T [ag + 2q¢ cos(27)]€ = 0, (8.45)

where 7 = wrpt/2. Find numerically the region of stability of this equation
for parameter values a¢ and g¢ around zero.
(ii) Compare the exact numerical solution of the Mathieu equation with
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the approximate analytic solution
& = & cos(BeT) [1 —+ % qe Cos(27')} , (8.46)

where B¢ = /a¢ + %qg and the initial conditions £(t = 0) = &o(1 + ¢¢/2),
é(t = 0) = 0 are assumed.

We are interested in both the vibrational motion of the ion in the trap
and in the internal electronic motion. The electronic motion has frequencies
O(10'%) Hz and the motion relative to the hyperfine structure frequencies
in the GHz range, while the motion of the ion in the trap is in the MHz
range. Therefore, we can employ the Born—Oppenheimer approximation
and separate the fast electronic motion from the slow motion of the ion.
States relevant to quantum information processing can be written as |i)|n),
where |i) refers to the electronic levels |g) and |e) (the computational basis
states for a qubit) and n = 0, 1,2, ... denotes the harmonic oscillator states
of the vibrational motion of the ion.

Let us now consider a string of N trapped ions (qubits). In this case,
there are 3N normal modes of vibration (2N radial and N axial modes).
We are only interested here in the two lowest frequency axial modes, the
centre-of-mass mode, where all ions oscillate together along z as a rigid
body, and the stretch mode, where the oscillation amplitude of each ion is
proportional to its distance from the centre of the trap. The frequencies of
the centre-of-mass and stretch modes are w, = w; and ws = vV3w,, where
wy is the frequency of the motion along z for a single ion. Note that the
frequencies w. and wy are independent of the number N of ions in the trap
(see exercise 8.13 for N = 2 and N = 3). The vibrational modes at higher
frequencies are essentially “frozen” during quantum information processing
experiments and therefore we ignore them.

Exercise 813 The Hamiltonian governing the motion of NV ions in a
harmonic linear trap is

Z Z “Mw?2? + Z > — 4MO|ZJ =T (8.47)

=1 =1 j>1

where ¢ and M are the charge and mass of each ion, ¢y is the electric
permittivity of free space and the last term in (8.47) represents the Coulomb
repulsion between the ions. Compute the equilibrium positions and the
normal modes of vibration for N =2 and N = 3.
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8.3.2 Laser pulses

Resonant interaction with laser light is used in all stages of ion-trap
quantum computations, from state preparation by means of laser cooling
techniques to controlled qubit manipulation to state measurement by the
quantum-jump technique. The Hilbert space for IV ions in a trap is spanned
by the states |i1,...,in;n), where i1,...,iy = g,e refer to the internal
states of the ions, while n determines the collective vibrational motion of
the ions. We assume that only one vibrational mode is relevant, say the
" In |n), the string is in the n-th
excited state for the (harmonic oscillator) motion at frequency w; and we

centre-of-mass mode at frequency wy.

say that n phonons are excited. Let us consider a laser beam addressing
the ion j (1 < j < N), with the laser frequency w tuned in such a manner
that w = w, + (' — n)w;, where hw, = E. — E, is the energy difference be-
tween the ground state |g) and the excited state |e). A resonant transition
between the states |i; = 0,n) and |i; = 1,7n/) is induced (we do not write
the states of the other ions in the trap since they are not modified by the
laser). As shown in Fig. 8.15, it is possible to combine two laser pulses in
order to change only the vibrational state of the string and not the internal
state of the ions. It is evident that, with an appropriate combination of
laser pulses, we can build the generic motional superposition state . c,[n)
starting from the ground state |0) (see exercise 8.14). We can also build a
generic superposition a|g) + 8|e) for the internal state of each ion. Indeed,
a classical resonant field with w = w, induces Rabi oscillations given by
Eq. (8.24). It is then clear that a generic single-ion (-qubit) state can be
obtained from the ground state |g) by applying a resonant laser pulse of
appropriate duration and phase.

The following three resonant interactions are of special importance for
ion-trap quantum computation.

1. Carrier resonance: we have w = w, and, keeping only the resonant
terms, the Hamiltonian describing the trapped ion-laser interaction is
given by

He = i0Q(ope™™ + o ), (8.48)

where (2 is the Rabi frequency measuring the strength of the ion-laser
coupling, ¢ is the phase of the laser and the operators o = l|e){g|,
o_ = |g){e]. This Hamiltonian gives rise to transitions of the type

11n some experiments the stretch mode at frequency /3w is also used.
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Fig. 8.15 Energy levels of a trapped ion. The global effect of the two transitions shown
in the figure (|g,1) — |e,2) and |e,2) — |g,0)) is to induce a transition between the
quantized levels of the harmonic trapping potential, leaving unchanged the electronic
state of the ion.

lg,n) < |e,n). Indeed, the temporal evolution governed by Hamiltonian
(8.48) in a time interval ¢ leads to the unitary evolution operator

_ 0 - ip i O
it COS 5 —1e Sin 5
Rc(ev(b) = e h = _Z'e*’kﬁ SinQ COSQ 5 (849)
2 2

where 6 = Qt and the matrix is written in the {|e,n),|g,n)} basis. In
particular, the transition |g,n) < |e,n) is obtained when 6 = 7, for any
¢ (up to a phase factor determined by ¢). More generally, Eq. (8.49)
describes Rabi oscillations between the states |g,n) and |e, n).

2. First red sideband: in this case w = w, —w; (red detuned laser) and the
trapped ion-laser resonant interaction Hamiltonian is

H_ = %hQn(ao.ga‘w + CLTO'_ei¢), (8.50)

where a and af are lowering and raising operators for the harmonic
trapping potential and n = 2720/ is the Lamb-Dicke parameter, with
20 = (0]22|0)!/2 spatial extension of the motional ground state and A
laser wavelength. Note that zp = /h/(2NMw;), where M is the ion
mass and N the number of ions in the string. The width of the ground
state oscillations scales o< 1/v/NM since the effective mass of the col-
lective centre-of-mass motion is NM. Hamiltonian (8.50) generates the
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unitary evolution

. 9 _iel® qin @
R_(6,0) = e hH_t _ oS 3 ie'? sin 5 (8.51)
’ —je"® sing cosg ’

where 0 = nQ/nt and the matrix is written in the {|g,n), |e,n—1)} basis.
Therefore, Hamiltonian (8.50) gives rise to |g,n) < |e,n — 1) transitions
with Rabi frequency n9Q+/n. Note that (8.50) is formally equivalent
to the resonant Jaynes—Cummings Hamiltonian. There is, however, a
different physical interpretation: a phonon and not a photon is absorbed
while the ion goes to the excited state. Moreover, the electromagnetic
field is not quantized as in the Jaynes—Cummings model.

3. First blue sideband: we have w = w, + wy (blue detuned laser) and
resonant interaction Hamiltonian

Hy = %hQn(aTa+6_i¢ + ao_ew). (8.52)
The unitary evolution Ri(0,¢) = e~ wH+t with § = nQv/n + 1t has
the same matrix representation as R. and R_ but with respect to the
{lg,n), |e,n 4+ 1)} basis. Therefore, Hamiltonian (8.52) induces |g,n) <
le,n + 1) oscillations with frequency n{2y/n + 1. Such oscillations have
no direct analogue in the CQED realm since a process in which the atom
transits to an excited state while at the same time a photon is emitted
would violate energy conservation. Hamiltonian (8.52) is known as the
resonant anti-Jaynes—Cummings Hamiltonian.

Exercise 8.14 Give a quantum protocol to build a generic motional su-
perposition state Zg:o ¢nlg,n) starting from the ground state |g,0).

The derivation of Hamiltonians (8.48), (8.50) and (8.52) can be found,
for instance, in Leibfried et al. (2003a), see also exercise 8.15. Three im-
portant conditions must be fulfilled: (i) the Lamb—Dicke parameter n < 1
(values of n ~ 0.2 are typical in experiments); (ii) the laser must be on res-
onance to avoid undesired excitations of phonons; more precisely, we need
|w — wq| < wy for the carrier transition, |w — (wg — wi)| < wy for the first
red sideband transition and |w — (wg + wt)| < wy for the first blue sideband
transition; (iii) the pulses must be longer than 1/w;, so that their Fourier
spectrum does not extend over the sidebands.

Exercise 8.15 The Hamiltonian describing the interaction of a trapped
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two-level ion with a laser field is

H; = hQ (0+ei(kz_“t+¢) + a,e‘“kz—wt%) : (8.53)
where  is the Rabi frequency, ¢ the phase of the laser, oy = le){g|,
o_ = a]:_, and the motion is restricted to one dimension, the position of the

ion in the harmonic trap being z = zo(a! + a), with 2o = \/h/(2Mw;) (M
is the mass of the ion and w; the angular frequency of the trap, typically of
the order of 10 MHz). The harmonic motion is quantized and described by
the Hamiltonian H,s. = hw; (a‘La + %) Study the effect of the interaction
(8.53). In particular:

(i) find the Rabi frequency for the resonant transitions |g, n) < |e,n’), with
[n), |n') eigenstates of the Hamiltonian Hogc;

(ii) derive Hamiltonians (8.48), (8.50) and (8.52) from (8.53) in the limit in
which the Lamb—Dicke parameter nn = kzp < 1.

Laser cooling. Laser cooling relies on the mechanical effect of light in a
photon—ion scattering process, that is , on the fact that photons carry not
only energy, but also momentum p = h/\, where h is the Planck constant
and A the wavelength of the light. If an ion is moving along the light
beam, it sees a Doppler-shifted light frequency, the frequency being higher
if the ion moves towards the laser beam and lower if the atom moves away
from the beam. The physical principle of Doppler cooling is to compensate
the Doppler shift for ions approaching the laser beam by means of a red
detuned laser. Then these ions are slowed down owing to the photons
kicking them. Typically, Doppler cooling allows cooling down to an average
motional quantum state (n) ~ 10 for trap frequencies in the MHz range.
The ultimate limit for Doppler cooling is due to the fact that the ions
are excited to a strong (usually dipole) transition with natural linewidth
(spontaneous emission rate) I' > wy.

The motional ground state |n = 0) can then be prepared by sideband
cooling; that is, by exciting the ions to a narrow transition (I' < wy) (a
forbidden optical line or a Raman transition). The laser is tuned into the
lg,n) to |e,n — 1) first red sideband transition. Subsequent spontaneous
emission occurs predominantly at the carrier frequency if the recoil energy of
the atom is negligible compared with the vibrational quantum energy (this
is the case if the Lamb-Dicke parameter n < 1). In this case, spontaneous
emission induces the transition |e,n — 1) — |g,n — 1). The red detuned
laser then leads to |g,n — 1) — |e,n — 2), and so on. At the end of the
process, the state |g,0) is reached with a high probability (preparation of
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the motional ground state for the centre-of-mass mode has been achieved
with ground state occupation > 99.9%).

Quantum gates. Single-qubit gates are obtained by tuning the laser to
the carrier resonance. Indeed, it is clear from Eq. (8.49) that, starting from
the ground state |g), a generic single-qubit state is obtained by means of a
laser pulse of appropriate duration and phase.

The CNOT gate can be obtained following the proposal of Cirac and
Zoller (1995). The basic idea is to employ the motional state of the string of
ions as a “bus” to transfer quantum information between two qubits (ions).
Therefore, the qubit—qubit interaction, which is necessary to implement
controlled two-qubit operations, is mediated by the collective vibrational
motion of the trapped ions.

Let us describe the Cirac—Zoller CNOT quantum gate between ions
[ (control qubit) and m (target qubit). We start from the initial state
i1, - ity vy im,y .. in;n = 0), which we simply write as |ij, iy,; 0) since
the other qubits are not affected by the quantum protocol described in what
follows. The use of an auxiliary level (Ja)) helps in performing the CNOT
gate.'? The following sequence of laser pulses is applied:

1. A red detuned laser acts on ion I. The unitary evolution R_(0 = 7, ¢ =
0) changes the states {|gi, gm), |91, €m), |€1, gm), €1, em )} of the two-qubit
computational basis as follows:

|91, gm3 0) — |91, 9m; 0),

|gl7em§0> - |gl7€m;0>7 (8 54)
ler, gm; 0) — —ilgi, gm; 1), '
|€l,€m;0> - _i|glaem; 1>'

As a result of this laser pulse, the quantum information of the control
ion is mapped onto the vibrational mode.

2. A red detuned laser is applied to ion m. The corresponding unitary
evolution, written in the {|gm,n = 1), |am,n = 0)} basis, is R_(0 =
27, ¢ = 0), note that the auxiliary level |a,,) is involved. Since § = 2,
the state |gm, 1) is mapped into —|gm, 1). Therefore, the states obtained

12The auxiliary level could be a third level (in addition to |g) and |e)) in the hyperfine
structure of the ground state.
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at the end of (8.54) are modified as follows:

> |gl;gm;0>7

915 €m30) = |91, €3 0),

_i|6lagm; 1> - Z.|elagm§ 1>7
—iler, em; 1) — —iler, em; 1).

|91, gm; 0) —
0) —

(8.55)

3. A red detuned laser is applied to ion [/, inducing again the unitary evo-
lution R_(6 = m, ¢ = 0). This leads to

|91, 9m3; 0) = |91, 9m; 0),

|glaem§0> - |gl,€m;0>7 (8 56)

Z‘|elvgm; 1> - |glagm;0>a .
—iler, em; 1) — —|gi, em;0).

The effect of this pulse is to map the state of the vibrational mode back
onto the control qubit.

The global effect of the three laser pulses is to induce a controlled phase-
shift gate CMINUS = CPHASE(7w). The CNOT gate is then obtained
from CMINUS after application of single-qubit (Hadamard) gates (see ex-
ercise 3.10).

It should be remarked that, although the vibrational mode could be
regarded as an additional qubit (spanned by the phonon states |0) and |1)),
in practice it is only used as a bus to transfer quantum information between
ions. Indeed, the “vibrational qubit” cannot be measured independently,
as is the case for the internal electronic states of the ions.

Quantum-jump detection. After a quantum computation, the state of
each ion can be measured using quantum-jump detection: each ion is illu-
minated with laser light of polarization and frequency such that it absorbs
and then re-emits photons only if it is in one particular qubit level (say, the
state |e)). In contrast, if it is in the other (|g)) state, the laser frequency is
out of resonance and does not induce any transition. Thus, the detection
of scattered fluorescence photons indicates that the ion was in the state
le). This is a projective measurement and a state discrimination efficiency
above 99% can be reached. Moreover, it is possible to measure several ions
in a trap individually. In order to uncover the average populations of the
states |g) and |e) for each ion, one has to repeat the quantum computation
and the final measurement a sufficient number of times.
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Optical and hyperfine qubits. In closing this section, we briefly discuss
the choice of the states |g) and |e) in the experiments. One needs two
“stable” levels; that is, two levels whose decay rates are much smaller than
the Rabi frequencies associated with the laser-induced transition |g) < |e).
Two different strategies have been followed: |g) and |e) are either the ground
state and a metastable excited state connected by a forbidden optical tran-
sition (optical qubit, as in Schmidt-Kaler et al., 2003 for °Ca™) or two
hyperfine sub-levels of the ground state (hyperfine qubit, as in Turchette et
al., 1998 for °Bet). An optical transition is driven by a single laser, while
for a hyperfine transition two lasers are used, far detuned from an interme-
diate level |¢). Such a Raman configuration (see Fig. 8.16 and exercise 8.16)
is used because the frequency w, for a hyperfine transition is O(GHz) and
can be driven resonantly by a single electromagnetic wave with wavelength
of order 10~! m. It is clear that such a wavelength, much larger than the
distance between two nearby ions in a trap (approximately 10 ym), would
not allow single-ion addressing.

lc>

®2,Q7
le> /
lg>

Fig. 8.16 A schematic diagram of a Raman transition. The two lasers have frequencies
w1 and wg, while Q1 and Q2 are the Rabi frequencies for the transitions |e) < |¢) and
lg) < |c), respectively.

Exercise 8.16 Show that in the Raman configuration drawn in Fig. 8.16,
the transition |g) < |e) takes place with Rabi frequency
20105

Qp v =——, (8.57)

where 21 and €25 are the Rabi frequencies of the two applied laser fields and
A > Qq,Q is the detuning with respect to the transitions |g) < |¢) and
le) < |c) (note that we have set i = 1). We assume that the initial wave
function [1(0)) = |g). Besides Eq. (8.57), the Raman approximation also
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predicts that level |¢) remains essentially unpopulated. Check the validity of
the Raman approximation by direct numerical integration of the equations
of motion for the overall three-level (|g), |e) and |c)) system.

8.3.3 Realization of the Cirac—Zoller CNOT gate

In this section, we describe the implementation of the Cirac—Zoller CNOT
quantum gate, reported in Schmidt-Kaler et al. (2003).13 Two #°Ca ions
are held in a linear Paul trap. The state of each ion encodes a qubit, |g)
and |e) corresponding to the S; /5 ground state and to the metastable Dj /o
state (with lifetime approximately 1s). The qubits are manipulated on the
S1/2 to D5/ quadrupole transition near 729 nm, by means of a laser tightly
focused onto individual qubits. The inter-ion distance is 5.3 um and the
laser beam has a width around 2.5 um.'* The addressing beam can be
switched from one ion to the other within 15 us. Doppler cooling (for 2 ms)
and sideband cooling (for 8 ms) prepare the vibrational mode in the |n = 0)
state with 99.9% fidelity. After initial state preparation, the pulse sequence
requires approximately 500 us (note that the decoherence time scale is of
the order of 1ms). First, the state of the control qubit is swapped onto the
bus mode in 95 us. Then a sequence of six concatenated pulses,

Ri(3.7) Bi( 55 3) Ralm.0) Ri( 505 ) Ra(m,0) Be(5.0),  (8.58)

is applied to the target qubit for a total time of 380 us. Finally, the state
of the control qubit is swapped back from the bus mode to the control ion
with a single pulse of 95 us. Final state detection is performed taking ad-
vantage of the quantum-jump technique: the Sy /3 to P/, dipole transition
near 397 nm is excited and the resulting fluorescence monitored by a CCD
camera which resolves the individual ions. Fluorescence is collected for
approximately 20 ms and state detection of each qubit is performed with
approximately 98% efficiency (errors result from spurious fluorescence from
the adjacent ion or from spontaneous decay of the ion within the detection
time).

The experimentally observed truth table for the CNOT gate is shown in
Fig. 8.17. The fidelity of the gate in this experiment is 71%. Sources of er-

13 A different implementation of a two-ion gate has been realized in Leibfried et al.
(2003b).

4 The finite beam width introduces small addressing errors; that is, the neighbouring
ion can also be excited. Such systematic errors can be compensated by adjustments to
pulse lengths and phases.
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rors in ion-trap quantum computation are the heating, due to stochastically
fluctuating electric fields, and laser frequency noise.

|2

08 <¥erpl Fideal >

Fig. 8.17 The experimentally observed truth table of the Cirac-Zoller CNOT gate op-
eration, using two 4°Cat ions held in a linear trap and individually addressed using
laser beams. The S;/, and Dy, states are denoted by |S) and |D) in the figure, with
|S) = |g) = |0) and |D) = |e) = |1). We can see that the CNOT truth table is im-
plemented: for instance, the input state |DD) = |11) is, to a good approximation,
mapped onto the output state |DS) = [10). The figure is reprinted with permission from
Schmidt-Kaler et al. (2003). Copyright (2003) by Macmillan Publishers Ltd.

The main difference between the original Cirac—Zoller proposal and
the actual experimental implementation in Schmidt-Kaler et al. (2003)
is that the technique of composite pulses, borrowed from NMR, is used
instead of working with a third auxiliary level. Let us briefly illustrate
the composite pulse method. The purpose of this technique is to avoid
sideband pulses coupling to states outside the computational subspace
{l9,0),]e,0),]g,1),|e,1)}. This constitutes a problem due to the harmonic
oscillator level structure: since the spacing between consecutive levels is
always the same, resonant sideband pulses work simultaneously on all lev-
els. Therefore, a blue sideband pulse induces a transition |g,1) — |e, 2), so
that population leaks from the computational subspace. Similarly, a red
sideband pulse induces a |e,1) — |g,2) leakage transition. A key point in
composite pulses is that the frequency of Rabi oscillations |g, n) < |e,n—1)
and |g,n—1) < |e, n) is proportional to \/n. Therefore, if we define § = nQt
in Eq.(8.51); that is, R_ (6, ¢) in this equation is written in the {|g, 1), |e, 0)}
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basis, and we choose § = jmv/2, with j integer, then there is no probability
transfer between the states |e, 1) and |g,2). Indeed, the matrix representa-
tion of R_ in the subspace {|g,1),]e,0),]g,2), |e, 1)} reads

cos \3/—7; —ie'® sin \J/—g 0 0
_ e~ 19 qip JT Jm 0 0
R_(szﬂ\/i, 6) = ie sin 77 cos 77
0 (—1)? 0
0 0 0 (—1)j

(8.59)
Hence, when 6 = jmy/2 there is no probability leakage, induced by R_,
from the computational subspace. The same holds for Ry (6, ¢) when the
angle 6 of the Rabi oscillation |g,0) « |e, 1) is equal to jmv/2. Next, it is
easy to check that also the composite pulse

Ri(=0',¢') Ra(jmV2,0) Re(0',¢) (8.60)

preserves the computational subspace. Thus, the gate Ry (jmv/2, $) forbids
probability leakage, while ', ¢ and ¢’ can be tuned in order to implement
the desired transformation.

As shown in exercise 8.17, it is possible to implement a CMINUS gate
between the bus qubit and a ion qubit by means of the following composite
pulse:

R+(ﬁ, g) Ry(m,0) R+<ﬁ, g) Ry(m,0). (8.61)

This sequence of pulses substitutes the 27-rotation of (8.55), with the ad-
vantage that there is no need of a third auxiliary level. Note that the
six-pulses sequence (8.58) differs from (8.61) by the addition of two Ram-
sey pulses (essentially, Hadamard gates), required to map a CMINUS gate
into a CNOT gate.

Exercise 8.17 Show that the composite pulse (8.61) implements a
CMINUS gate between the bus qubits and the ion qubit, without prob-
ability leakage.

8.3.4 Entanglement generation

Trapped ions have been used to create and characterize multi-ion entangled
states (so far, with up to eight qubits). A very important feature of this
experiments is that entangled states are engineered deterministically. That
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is to say, the entanglement generation does not rely on random processes
as in experiments with photons (for instance, the creation of entangled
photons in parametric down-conversion, see Sec. 8.5.2). This is important
because the production of entangled state on demand is crucial for the
realization of large-scale quantum computers.

Two-ion entanglement. We first briefly describe the entanglement of
two trapped ions reported in Turchette et al. (1998). The purpose of this
experiment was to generate the state

[Ve(9)) = lge) — €3 leg), (8.62)

where ¢ is a controllable phase factor. The state |¢.(¢)) is a good approx-
imation to the Bell state |[¢p~) = éﬂge) — |eg)) for ¢ = 0 and to the

Bell state |1p+> = % (|ge) + |eg)) for ¢ = m. More precisely, the fidelity
|< A |2 = | (e (m ‘2 = 0.98 and the entanglement (measured ac-
cording to Eq. (5.231)) E(|%e(¢))) ~ 0.94. In the experiment, the fidelity
obtained was {4, (0)|p[.(0)) (e (m)|o* [ (m)) ~ (WE|p*|p*) ~ 0.70,
with p* the density matrix describing the generated state.

The two-qubit states are two levels of the hyperfine structure of *Be™:
251 /5 |F=2,mp=2) = |g) and 255 |[F=1,mp=1) = |e). State readout is
performed by observing the fluorescence of the |g) — 2P3/2 |F=3, mp=3)
transition driven by a resonant laser. Two ?Be™ ions are confined in a
Paul trap, with ion spacing ~ 2um. Two types of transitions are driven:
carrier and red sideband. As we know, sideband transitions involve the
motional state of the ions. For N = 2 ions, the only two modes of the
motion along z are the centre-of-mass mode, at frequency w, and the stretch
mode, at frequency v3w, (see exercise 8.13). The stretch mode was used
in this experiment since it was possible to cool it down to the ground
state with higher probability (99%) than for the centre-of-mass mode. An
interesting aspect of this experiment is that the distance between ions is
too small to address them individually. Therefore, the following technique
was pursued: different Rabi frequencies for the carrier transitions were
obtained by applying a static electric field to push the ions along z. In
this manner, the two ions couple differently to the laser beam and the two
corresponding Rabi frequencies, 21 and 23, can be significantly different.
In Turchette et al. (1998), 2 = 205 was chosen, so that, starting from the
state |g, g;0) (|0) is the ground state for the stretch mode) and driving the
carrier transition for a time t = %, the state |g, e;0) is obtained (indeed,
the first qubit is not flipped because 21t = 7, while the second is flipped
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because 23t = 7). The red sideband transition is then applied for an
appropriate time, leading to the final state [¢.(¢);0), where the phase ¢ is
due to the fact that the two ions see different laser phases.
Quantum-jump detection allows one to distinguish the state |gg) from
the couple {|ge),|eg)} and the state |ee), just by looking at the intensity
Iy of the fluorescence signal, which is proportional to the number of ions
in the |g) state. Given a two-ion state |¢), Ir & 2pgg + Dge + Deg, Where
pi; = (ij]y) with ¢,5 = g,e. In order to distinguish between the states
[te(0)) and |9 (7)), we exploit the fact that the singlet state |¢)~) (which
is very similar to |1.(0))) is invariant under rotation (see Sec. 2.5), while
this is not the case for the “triplet” state [) (similarly to [¢e(m))). If
both qubits are rotated, by means of a laser pulse, through the same angle
6 about the x-axis of the Bloch sphere (see Eq. 8.24), it can be seen that

we map the state [¢)1) onto
é [cos6(|ge) + |eg)) — isind(|gg) + |ee))] (8.63)

while the state |¢~) is unchanged. Therefore, it is possible to distinguish
between [1).(0)) and |1 (7)) (which are very similar to the Bell state |¢~)
and |¢7)) by looking at the evolution of the probabilities pgg + pee and
Dge + Deg s a function of ¢ = 0/, where Q, is the period of the Rabi
pulse that implements the rotation of angle . The experimental results
are shown in Fig. 8.18.

Multiparticle entanglement of trapped ions. Two different classes of
many-ion entangled states have been prepared and characterized in ion-trap
experiments: the Schrédinger cat states (also known as GHZ states)

Weat (V) = 25199, .9) + “le.e....e)) (3.64)

with up to N = 6 qubits (Leibfried et al., 2005) and the so-called W states
(see Diir et al., 2000)

|7/1W(N)> = ﬁﬂe,...,e,g)-l—|6,...,e,g,e>+~'~+|g,e,...,e>) (865)

with up to N = 8 qubits (the first “quantum byte”, see Haffner et al., 2005).
Cat states have been prepared with fidelities ranging from 0.76 (for N = 4)
to 0.51 (for N = 6) and the presence of N-particle entanglement proved
experimentally. On the other hand, W states have been generated with
fidelities from 0.85 (for N = 4) to 0.72 (for N = 8) and fully characterized
by means of quantum state tomography. Indeed, as shown in Fig. 8.19,
the N x N density matrix is reconstructed. This result is achieved by
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Fig. 8.18 Probabilities pgg+pee and pge +peg as functions of time ¢ for the state |1 (0))
(above) and |¢e (7)) (below). The rotation angle 6 = Q,t, with Q, /27 ~ 200 kHz. Note
that in the figure | stands for g and | for e. The figure is reprinted with permission from
Turchette et al. (1998). Copyright (1998) by the American Physical Society.

repeating the experiment (preparation of the W state) several times, each
experimental run finishing with the measurement of o, for each qubit. The
measurement basis is rotated prior to measurement by appropriate laser
pulses: 3V different bases are used and the experiment is repeated at least
100 times for each basis (for N = 8, this amounts to approximately 6.5 x 10°
experimental runs, leading to the results shown in Fig. 8.19). Note that
this procedure is a generalization to many qubits of the state reconstruction
technique discussed in Sec. 5.5 for a single qubit.

Deterministic teleportation. Two experimental implementations of the
quantum teleportation protocol using three trapped ions have been reported
in Riebe et al. (2004) and Barrett et al. (2004). In both cases, the initial
quantum state, a|g) + Sle), is prepared and then teleported from one ion
to another, following the teleportation protocol described in Sec. 4.5. A
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Fig. 8.19 Quantum state tomography of the W state |y (IN)) for N = 8 ions in a
trap. The absolute values |p| of the experimentally reconstructed density matrix are

shown in the {|g,...,g),...,le,...,e)} basis (here |S) stands for |g) and |D) for |e)).
Ideally, the height of the peaks should be % = 0.125 while all other entries of the

density matrix should be equal to zero. In the upper right corner an image of the string
of N = 8 trapped ions is shown. The figure is reprinted with permission from Héaffner et
al. (2005). Copyright (2005) by Macmillan Publishers Ltd.

fidelity of the teleported state around 0.75 is achieved, thus exceeding the
maximum value of 2/3 that could be reached without taking advantage of
quantum entanglement. We stress that, as we shall see later in this chapter,
in contrast to the teleportation experiments with entangled photons there
is no post-selection of data after completion of the experiment.

It is interesting to note that quite different experimental techniques have
been used in Riebe et al. (2004) and Barrett et al. (2004) to obtain similar
experimental results. In the first case, optical qubits (calcium ions) are
used, two-qubit gates closely follow the proposal of Cirac and Zoller and
ions are addressed individually by tightly focused laser beams. In the latter
case, hyperfine qubits (beryllium ions) are used, the two-qubit gates are
performed following a geometric method and individual qubit addressing is
possible thanks to a segmented trap. That is to say, the control electrodes
are segmented, providing a total of six trapping zones, and the potentials
applied to these electrodes can be varied in time, so shuttling ions between
different zones. Thus, the ion on which we wish to shine a laser beam can
be isolated, while still maintaining entanglement with the other ions. This
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result can be considered as a first step towards a scalable architecture of
interconnected ion traps.

8.4 Solid state qubits

Qubits made out of solid-state devices may offer great advantages since fab-
rication by established lithographic methods allows for scalability (at least
in principle). Moreover, another important feature of solid-state devices is
their flexibility in design and manipulation schemes. Indeed, in contrast
to “natural” atoms, “artificial” solid-state atoms can be lithographically
designed to have specific characteristics such as a particular transition fre-
quency. This tunability is an important advantage over natural atoms. Fi-
nally, solid-state qubits are easily embedded in electronic circuits and can
take advantage of the rapid technological progress in solid-state devices as
well as of continuous progress in the field of nanostructures. On the other
hand, it should be remarked that there is a great variety of decoherence
mechanisms, still not well understood, in solid-state devices.

Two main strategies have been followed for making solid-state qubits.
In the first strategy, the qubits are single particles, such as nuclear spins in
semiconductors or single electron spins in semiconductor quantum dots. In
the second strategy, qubits are constructed from superconducting nanocir-
cuits based on the Josephson effect.

8.4.1 Spins in semiconductors

A proposal by Kane (1998) is sketched in Fig. 8.20. The qubits are the
S = % nuclear spins of 3'P impurities in silicon. Gate operations are per-
formed by means of magnetic fields (NMR techniques) and static electric
fields. Each qubit is controlled through the hyperfine interaction between
the nucleus of 3'P and the bound electron around it. Such an interaction
is due to the coupling between the nuclear spin S,, and the electronic spin
S. and its strength is proportional to |1/(0)|?; that is, to the probability
density of the electron wave function at the nucleus position. The hyperfine
coupling can be controlled by an applied electric field (A-gates in Fig. 8.20)
that shifts the electron wave function from the phosphorus nucleus, thus
reducing the hyperfine interaction. The transition frequency of each qubit
(3'P nucleus) is therefore determined by both the static magnetic field B
applied to it and the hyperfine interaction. Thus, the A-gates can control
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the transition frequency of each single qubit and bring them into resonance
with the oscillating magnetic field Bac. In this manner, arbitrary single-
qubit quantum gates can be realized with resonant pulses, such as in NMR
implementations discussed in Sec. 8.1. Two-qubit quantum gates would be
implemented using the J-gates of Fig. 8.20, which control the exchange in-
teraction between two neighbouring bound electrons. Indeed, the exchange
interaction depends on the overlap of the electron wave functions and can be
controlled by the J-gates bringing the two electrons closer. Since the hyper-
fine interaction couple each qubit with its bound electron, the qubit—qubit
interaction is mediated by the exchange interaction between the electrons.
This proposal requires nanofabrication on the atomic scale, to place phos-
phorus impurities (and gates) in a silicon crystal in an ordered array with
separation of order 10nm. This is beyond the reach of current technology.
Nevertheless, one should consider the fact that silicon technology is a very
rapidly developing field.

-3
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Fig. 8.20 A schematic drawing of Kane’s proposal. The figure is reprinted with per-
mission from Kane (1998). Copyright (1998) by Macmillan Publishers Ltd.

8.4.2 Quantum dots

Quantum dots are structures fabricated from semiconductor materials, in
which electrostatic potentials confine electrons inside small “boxes”. When
the size of the box is comparable to the wavelength of the electrons by
which it is occupied, then the system exhibits a sequence of discrete energy
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levels, quite as in atoms. For this reason quantum dots are also known as
artificial atoms. Typical binding energies and size of the orbits are 1 meV
and 50nm, to be compared with 10eV and 0.05nm (Bohr radius) for nat-
ural atoms. Quantum dots are fabricated starting with a semiconductor
heterostructure, a sandwich of different layers of semiconducting materials
(such as GaAs and AlGaAs), which are grown on top of each other using
molecular-beam epitaxy. By doping the AlGaAs layer with Si, free electrons
are introduced, which accumulate at the interface between GaAs and Al-
GaAs, thus forming a two-dimensional gas of electrons that move along the
interface. Metal gate electrodes applied on top of the heterostructure cre-
ate an electric field that locally depletes the two-dimensional electron gas,
creating one or more small islands (quantum dots) of confined electrons in
an otherwise depleted region (see Fig. 8.21). Note that two sufficiently close
quantum dots can be coupled through the overlapping of their electron wave
functions, thus creating artificial molecules. At present, single and double
quantum dots can be made, with a number of electrons controllable (by
means of an applied voltage) down to just one electron.

a b

t
gate depleted
region

Ohmic
contact

Fig. 8.21 A schematic drawing (a) and scanning electron micrograph (b) of a semicon-
ductor heterostructure with two coupled quantum dots. In the left-hand figure, negative
voltages applied to metal gate electrodes (dark gray) lead to depleted regions (white) in
the two-dimensional electron gas (light gray). Electric contacts to reservoirs are obtained
through ohmic contacts. In the right-hand figures, the gate electrodes (light gray) are
shown on top of the surface of the heterostructure (dark gray). The source (S) and drain
(D) reservoirs are connected to the two quantum dots (white circles) via tunnel barriers.
The two upper electrodes can be used to measure changes in the number of electrons
in the dots. The figure is taken from Elzerman et al. (2006). Copyright (2006) by the
Italian Physical Society.

The qubit can be realized as the electronic spin of a single-electron quan-
tum dot, the use of electron spins as qubits being attractive due to their
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long decoherence time. In the proposal of Loss and DiVincenzo (1998) (see
Fig. 8.22) the dots that hold the electron spins (qubits) are placed in an ar-
ray on top of a semiconductor heterostructure. A static magnetic field B in-
duces an energy gap (Zeeman splitting) between the states |0) (spin up) and
|1) (spin down) of each qubit. The Zeeman splitting is AE = gupB, where
g ~ —0.44 is the Landé g-factor of GaAs and up ~ 9.27x ~24 Joule/Tesla is
the Bohr magneton. The spin state of single qubits can then be controlled
by applying an oscillating magnetic field B,. in resonance with the Zeeman
splitting (that is, with angular frequency AE/K). This technique is known
as electron-spin resonance. A local difference in the Zeeman splittings could
be obtained by means of gate potentials applied between the top and the
bottom of the heterostructure. Each electron could then be shifted individ-
ually towards a layer of the heterostructure with a different g-factor. This
would allow resonant addressing of individual qubits.

2DEG high-g layer back gate

Fig. 8.22 A schematic picture of an array of quantum-dot spin qubits as proposed by
Loss and DiVincenzo (1998). The quantum dots (circles) are created by metal electrodes
on top of a semiconductor heterostructure containing a two-dimensional electron gas
(2DEG). Each dot holds a single electron, whose spin state is pictorially represented by
an arrow. The back gates can modify the Zeeman splitting by pulling the electron wave
function into a layer with a large g-factor. The figure is taken from Elzerman et al.
(2006). Copyright (2006) by the Italian Physical Society.

The interaction between two spins, S; and S;, can be modelled by
the Heisenberg exchange interaction J;;.8; - S;, where J;; depends on the
overlap of the electronic wavefunctions. The coupling J;; is relevant only
between nearest neighbour qubits, provided each electron is well localized in
a single quantum dot. Applying a gate voltage at the surface, the potential
barrier between adjacent dots can be increased, thus reducing drastically
the Heisenberg coupling. It is therefore possible to switch on and off the
coupling between qubits and this provides a clear mechanism for the im-
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plementation of two-qubit gates. In particular, it can be checked that, if
the interaction between two neighbouring qubits is switched on for a spe-
cific duration ts, then the SWAP gate is realized. If on the other hand
the duration is ts/2, then by definition the vVSWAP gate is implemented.
The important point is that the vVSWAP and single-qubit gates constitute
a universal set of quantum gates (indeed, as shown in exercise 8.20, the
CMINUS gate can be obtained from v/SWAP and single-qubit gates).!®

Readout is possible if the information contained in the spin is converted
to information contained in the charge by a spin-dependent tunnelling pro-
cess. First, the gate voltage is modified so that the electron stays in the
dot if it has spin up, while it leaves the dot (tunnelling to a reservoir) if
it has spin down. Detection of the charge of the dot is then possible using
devices such as quantum point contacts (see Elzerman et al., 2006). In this
manner, the difficult problem of measuring the polarization of a single spin
has been replaced by a much easier charge measurement.

Coherent control of two coupled electron spins in a double quantum dot
was demonstrated by Petta et al. (2005). In this experiment, the qubit
was encoded in the spin of two electron states with one electron charge in
each dot. The two states of the qubit are therefore the single state (S = 0)
and the triplet state S = 1 with S, = 0. Coherent qubit manipulation (up
to times larger than 1 us, using echo techniques borrowed from NMR) was
achieved by controlling the exchange interaction between the two dots.

Scalability is in principle possible since arrays of quantum dots can be
produced with present technology. However, it should be taken into account
that there are a great variety of possible decoherence processes in quantum
dots and our knowledge of them is still very limited.

Exercise 8.18 The simplest example to study the bound states of a
particle is the infinitely deep one-dimensional square-well potential

0, 0 <z <a,
400, <0, a <z

V(z) = { (8.66)

Find the stationary states and the energy levels for this model.

Exercise 8.19 A more realistic case useful for the study of bound states

15Note that, by properly encoding each logical qubit into three spins instead of one, it is
possible to perform universal quantum computation using only the Heisenberg exchange
interaction (DiVincenzo et al., 2000). This possibility may be useful as it avoids the
implementation of single-spin rotations, which is difficult in quantum-dot arrays.
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is the well of finite depth:

=V, —a <z <a,
Viz) = { 0 < —a a<uz (8.67)

with V5 > 0. Find the bound stationary states and energy levels for this
model.

Exercise 8.20 Show that the CMINUS gate can be obtained from the
SWAP and single-qubit gates as follows:

CMINUS = (I @ R.(r)) (VSWAP) ' (I ® R.(w/2))
x SWAP (I ® R.(—7/2))VSWAP. (8.68)

8.4.3 Superconducting qubit circuits

Superconductors have the ability to conduct electricity without loss of en-
ergy. In superconductors, pairs of electrons are bound together to form
objects of twice the electron charge, known as Cooper pairs. A Joseph-
son junction consists of two superconductors separated by a thin insulating
barrier (see, e.g., Tinkham, 1996). Cooper pairs can tunnel through the
barrier, this being a dissipationless process. Note that quantum tunnelling
allows transport through regions that are classically forbidden owing to
potential barriers (see exercise 8.21).

Exercise 8.21 Study the transmission properties of a square barrier,
described by the potential

W, 0<z<a,
V(x)—{o’ <0 a<a, (8.69)

with Vy > 0. Consider the case where the energy E < Vj (the tunnel effect).

Two energy scales determine the behaviour of a Josephson-junction cir-
cuit: the Josephson energy E; and the electrostatic charging energy E¢ for
a single Cooper pair. The Josephson energy is related to the critical current
I; (the maximum current that can flow through the junction without dissi-
pation) by the relation E; = I;h/2e. Depending on the ratio E;/Ec, one
can distinguish between charge qubits (F; < Ej, typically E;/Ec ~ 0.1),
charge-flux qubits (E;/Ec ~ 1), flux qubits (E;/FEc ~ 10) and phase
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qubits (E; > E¢, typically E;/Ec ~ 10°). Single-qubit coherent control
has been demonstrated in all these regimes. In the remaining part of this
section, we shall limit ourselves to the discussion of two relevant examples,
trying to give a flavour of the flexibility in the design and manipulation of
superconducting qubits.

Charge qubits. Electrostatic potentials can confine Cooper pairs in a
“box” of micron size. In a Josephson junction a Cooper-pair box, known as
the island, is connected by a thin insulator (tunnel junction) to a supercon-
ducting reservoir (see Fig. 8.23). Cooper pairs can move from the island to
the reservoir and vice versa by quantum tunnelling effects. They enter the
island one-by-one when a control-gate electrode (voltage U), capacitively
coupled to the island (capacitance Cj), is varied. The island has discrete
quantum states and, as we shall see below, under appropriate experimental
conditions the two lowest energy states form a two-level system appropriate
for a qubit. The charging energy is Ec = (2¢)?/2C, where C = C; + C,
is the total capacitance of the island, C'; being the tunnel junction capaci-
tance. If the capacitance C is in the range of a femtofarad or smaller, then
Ec/kp > 1K. Typical values of F;/kp in the circuits considered here are
instead 0.1 K, so that F;/Ec < 1.

tunnel junction  gate

Cry Cgx
13

1sland

O

Fig. 8.23 A schematic drawing of a Josephson-junction qubit in its simplest design:
a small superconducting island with n excess Cooper pairs (relative to some reference
state) is connected by a tunnel junction with capacitance C; and Josephson coupling
energy Ej to a superconducting reservoir. The junction is biased by a gate voltage U
with gate capacitance Cy.



568 Principles of Quantum Computation and Information. II

The Cooper-pair box is described by the Hamiltonian
H = Ec(n—n,)* — Ejcos ¢, (8.70)

where n is the number of extra Cooper pairs in the island and ¢ the phase
drop of the superconducting order parameter across the junction. The
variables ¢ and n are conjugate; that is, [¢,n] = i. The dimensionless gate
charge ny, = CyU/2e can be controlled by tuning the gate voltage U. In
the regime Ej/Ec < 1 a convenient basis is the basis of the eigenstates |n)
of the number operator n. The Josephson term E; cos ¢ is not diagonal in
this basis since

cosgn) = & (e +e ) |n) = L(In+1)+|n—1)). (8.71)

Therefore, in the n-basis Hamiltonian (8.70) reads

H = EcY (n—ng)*ln)(n| — $E; Y (In+ 1)(n|+|n)(n+1]). (8.72)
n n

For E; < E¢ the charge states |n) are weakly mixed by the Joseph-
son term, except near the “optimal” operating points with n, half-integer,
where the electrostatic charging energy of the states |ng - %> and |ng + %>
is the same and the Josephson coupling mixes them strongly (see Fig. 8.24).
Therefore, the dynamics at low temperatures (kg1 < E¢) is essentially
limited to these two charge states. To simplify writing, we assume ng
around 1, so that the two relevant charge states are |0) and |1). Projection
of the Hamiltonian (8.72) onto the subspace spanned by these two states
leads (neglecting an irrelevant energy offset) to the single-qubit Hamilto-

nian

Hg = %eoz - %Aax, (8.73)

where ¢ = Ec(2n, — 1) and A = E;.1® This Hamiltonian can be easily

diagonalized. The energy splitting between its eigenvalues is Q = V€2 + AZ2.
The eigenvalues are Ay = i% and the corresponding eigenstates read

+) = cos 2]0) —sin &1 ,

+) = cos H0) —sin 411 -

|—) = sin 5]0) + cos 5|1),

where we have introduced the mixing angle 6, defined by tanf = A/e. At
the degeneracy point, 6 = 7, the eigenstates are equal superpositions of

16Note that Hamiltonian (8.73) is generic for a real Hamiltonian in the vicinity of an
avoided crossing, see also the discussion on avoided crossings in Sec. 6.5.6.
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the states |0) and |1) and the energy splitting Q@ = A = E;. Far from the
degeneracy point the eigenstates |£) reduce to |0) and |1), as the charging
energy is the dominant term in the Hamiltonian Hg. Typical frequencies
are /27 ~ 10 GHz.

0.6

0.4

E/E,

0.2

Fig. 8.24 The lowest energy levels of a Cooper-pair box, for Ej/Ec = 0.1 (solid curves).
The dashed curves show the energy levels for E; = 0.

It is now clear that generic single-qubit operations can be implemented
by properly switching the gate voltage (thus tuning the Hamiltonian Hg)
for a given time (see exercise 8.22). For instance, one can start far from
the degeneracy point, move the system quickly to the degeneracy point
(by means of a change in the gate voltage) for a time T and then back
to the initial value of the gate voltage. This pulse implements a rotation
about the z-axis of the Bloch sphere and was realized by Nakamura et
al. (1999). Protocols alternating pulses (rotations about the z-axis) and
evolutions far from the operating point (that is, rotations about the z-axis)
were also implemented. This is sufficient to obtain any unitary single-qubit
transformation.!” Finally, we point out that conditional gate operation
(CNOT gate) has been achieved (Yamamoto et al., 2003) using a pair of
superconducting charge qubits connected by a capacitor.

Exercise 8.22 For a two-level system, study the effect of a pulse of

17 According to the Landau-Zehner effect, the level crossings shown in Fig. 8.24 pro-
duce tunable rotations of the single-qubit wave function. This could be used for the
implementation of general single-qubit gates, see Benza and Strini (2003).
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duration T', described by the Hamiltonian (8.73).

The “quantronium” circuit. The superconducting qubit demonstrated
by the Saclay group (see Vion et al., 2002 and Esteve and Vion, 2005) is an
improved Cooper-pair box circuit, dubbed a “quantronium”. Both the ide-
alized diagram of the quantronium and the scanning electron micrograph
of a sample are shown in Fig. 8.25. The box Josephson junction is split into
two junctions, each with Josephson energy %E 7. The reason for splitting
the junction is to form a loop that can be biased by a magnetic flux @,
produced by a current I circulating in a loop. The main difference of the
quantronium with respect to the charge qubit is the presence of an extra
large Josephson junction in the loop (with Josephson energy Fjo = 15E;),
whose phase v is in principle an extra dynamical quantum variable, but
in practice behaves as an additional classical control parameter. The su-
perconducting phase difference § across the combination of the two smaller
junctions is related to v and ® according to the relation § = vy + 2e®/h.
The Hamiltonian of the split box reads

H = Ec(n—ny)*> — Ejcos g cos ¢, (8.75)

where ¢ is the superconducting phase of the island. Note that, unlike the
Cooper-pair box Hamiltonian (8.70), the effective Josephson energy

)
E; = E; cos 5 (8.76)

can be tuned by changing the magnetic flux ® via the current Is. The
circuit is operated at F; ~ FE¢, with Ej/kp ~ Ec/kp ~ 1K, so that the
charge states, unlike the case of charge qubits, are not good approximations
to the eigenstates of Hamiltonian (8.75). As experiments are performed at
low temperatures (20 mK < FE;/kp, Ec/kp) and the spectrum is suffi-
ciently anharmonic, the dynamics is restricted to at most the two lowest
energies eigenstates.!® These are the states |0) and |1) of the superconduct-
ing qubit. The corresponding eigenvalues, Fy and F1 = Ey + k), depend
on the two control parameters, ngy and §. At the optimal working point
(ng = %, d = 0), both 92/0n, and 9€/96 vanish, so that to first order the
quantronium is insensitive to noise in the control parameters ny and 6. At
the optimal working point, /27 =~ 16 GHz.

18The anharmonicity is an important requirement to avoid the population, under res-
onant pulses, of states outside the two-dimensional subspace used for the qubit; see a
discussion of this problem in Sec. 8.3.3.
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The two lowest energy states; that is, the states |0) and |1) of the qubit,
are discriminated by applying a trapezoidal current pulse I,(¢) to the large
(readout) junction and by monitoring the voltage V() across it. The peak
value of Ij,(t) is slightly below the critical current of the readout junction.
As this bias current adds to the loop current in the readout junction, then
the switching of the readout junction to a finite voltage state occurs, for
state |1), with probability p; larger than the switching probability py for
state |0). Note that this is in principle a standard projective measurement,
even though the fidelity p; — py of the measurement achieves a maximum
value 0.4, much smaller than the unit fidelity of an ideal projective mea-
surement.

preparation readout

Fig. 8.25 Left: A scheme of the quantronium circuit. The black node denotes the
superconducting island, delimited by two small Josephson junctions (crossed boxes) in
a superconducting loop including also a third, larger, Josephson junction. Right: A
scanning electron micrograph of a sample. The figure is taken from Vion et al. (2003).

The manipulation of the qubit state is achieved by applying time-
dependent control parameters I,(t) and ng(t) = Cy(U + u(t))/2e, where
u(t) is a microwave pulse. The controlled manipulation of the single-qubit
state is shown in Fig. 8.26: a microwave resonant pulse of duration 7 in-
duces controlled Rabi oscillations between the states |[0) and |1). If 7 is
appropriate, the NOT gate (|0) — |1}, |1) — |0)) is implemented. A Ram-
sey fringe experiment also allowed measurement of the decoherence time
scale tq &~ 500ns for this circuit, see Vion et al. (2002). This time is much
longer than the time required to implement a single-qubit gate, so that
an arbitrary evolution of the two-level system can be implemented with a
series of microwave pulses. Note that the time for a single qubit operation
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can be made as short as 2ns.

Ps (%)
50 p

40

30-3}I T

0 50 100 150 200 250
pulse duration {ns)

Fig. 8.26 Coherent manipulation of a Josephson-junction qubit: Rabi oscillations of
the switching probability as a function of the duration of a microwave resonant pulse are
observed. The figure is taken from Ithier et al. (2006). Copyright (2006) by the Italian
Physical Society.

A very interesting point is that the quantronium implements the usual
Hamiltonian of an NMR system. Indeed, for n, = % the first term in
Hamiltonian (8.75) vanishes, so that the charge operator and the time-
dependent control part of the Hamiltonian (the microwave pulse) are purely
off-diagonal in the basis of the two lowest energy eigenstates of the Hamil-
tonian. Therefore, the quantronium implements the usual Hamiltonian of
an NMR system, where the time-dependent RF field is orthogonal to the
static magnetic field (see Sec. 8.1). This has allowed the successful im-
plementation of manipulation methods inspired from NMR, such as spin
echoes and composite pulse techniques (see Collin et al., 2004).

Finally, we point out the analogy with atomic physics: the pulsed mi-
crowave generator plays the role of a laser resonant (or near-resonant) with
the transition frequency of the two level-systems, the transition frequency
is tuned by varying the voltage U or the magnetic flux ®, similarly to the
Stark and Zeeman effects in atomic physics, and the readout circuit is the
analogue of a Stern—Gerlach apparatus.
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8.5 Quantum communication with photons

At present, the only appropriate physical system for long-distance commu-
nication of quantum states is the photon. Photons can travel long distances
with low loss in optical fibres or even in free space. Furthermore, the state
of a single photon can be manipulated using basic linear optical compo-
nents; that is, phase shifters and beam splitters, which we shall discuss in
Sec. 8.5.1. The purpose of this section is to present the basic principles of
the experimental implementations of teleportation and quantum cryptog-
raphy with photons. Before doing so, a short introduction to linear optics
is required.

8.5.1 Linear optics

An optical component is said to be linear if its output modes (with creation
and annihilation operators b;( and bj) are a linear combination of its input

modes (with creation and annihilation operators a} and a;):
bl =" Mjial. (8.77)
k
Phase shifter. This is defined by the transformation
Up(¢) = €™ = eia'e, (8.78)

Therefore, the Fock state |m) is mapped into €?*™|m). In practice, a phase
shifter is a slab of transparent medium with refractive index n different
from the free space refractive index ny. Hence the wave vectors in the
medium and in free space are k = nw/c and ko = now/c, where w/27 is
the photon frequency and ¢ the speed of light in the vacuum. If the photon
travels a distance L through the medium, its phase changes by e***, which
is different from the phase change e**o” for a photon travelling the same
distance in free space. The phase shift ¢ in (8.78) is then kL for the photon
travelling in the medium and koL for the photon travelling in free space.

Beam splitter. By definition, a beam splitter acts on two modes through
the unitary transformation

) 8.79
e ®sinf  cosh ( )

cosf® —e®sinf
Up(8,¢) =
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where the input and output modes are related through the linear mapping
al[0) = Y (Up),, b 0). (8.80)

In particular, given the input state

alym
|mn) = (\/1737 N |00, (8.81)

—
)
N —+

we obtain the output state

m

2 mo2
1
Uplmn) = S Ws)abl| | (Us)jpbl| [00)
mln! | =
1 . o .
= — (cos bl + e~ sin Hb;) (—e'sin bl + cos GbE) |00). (8.82)
m!n!

For instance,

Ugl00) = 100),

Ugpl10) = cos@|10> + e " sind |01),

Up|01) = —¢*®sinf[10) + cos @ |01),

Uplll) = —\/_e“z’sm00059|20>+00529|11>—|—\/_e @ sin  cos 6 |02),
Ugp|20) = cos 9|20)—|—\/_e @ sinf cosf |11) + =2 sin? 002),
Upl02) = €*?sin? 0 |20) — v/2¢' sin § cos 6 |11) 4 cos® 6]02). (8.83)

Exercise 8.23 In the dual-rail representation a single photon can follow
two different paths and the two states of the qubit (]0) and [1)) correspond
to the photon following one path or the other (see Fig. 8.27). The two logical
states can be written as |0) = a}[0),|0); = |1),]0), and [1) = al[0),|0), =
|0)|1);, where the operators a, and a! create a photon in the input modes
0 and 1 and |0),, |0); are the vacuum states corresponding to these modes.
A beam splitter (see Eq. (8.79) with 6 = 7 and ¢ = —7) implements the
transformation |0) — %OO') +i[1’)) and 1) — \/—12(z|0’> + (1)), where
0) = B 100 10}y, = [L)g 109y, and [17) = b, [0)q, |00, = [0}/, Here b
and b‘;, create a photon in the output modes 0’ and 1’. Show that this beam
splitter, together with two — 7 phase shifters, implements a Hadamard gate
(see Fig. 8.27, left).

We can also introduce the polarization qubit: the two polarization states
|h) and |v) stand for the states |0) and |1). Show that the CNOT gate is
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implemented (up to a sign factor) by the circuit in Fig. 8.27 (right), provided
the dual-rail qubit is the control and the polarization qubit the target and
that a polarization rotator (|h) — |v) and |v) — —|h)) is placed in the
upper (1’) path (see Cerf et al., 1998).

1) 1)

0) L, 0y o) o)

1) 1)

Fig. 8.27 Optical simulation of Hadamard (left) and CNOT (right) gates.

Exercise 8.24 The two beams emerging from the beam splitter in
Fig. 8.27 can be recombined using perfectly reflecting mirrors and another
beamsplitter. This is the principle of the Mach—Zehnder interferometer
drawn in Fig. 8.28, an optical tool used to measure small phase shifts be-
tween the two paths connecting the two beam splitters. Show that, if a
phase shifter is put into one arm of the interferometer, then the entire cir-
cuit is equivalent to a single beam splitter of arbitrary transmittivity (the
transmittivity 7' and the reflectivity R in (8.79) are defined as T' = cos? 0,
R=1-T =sin?9).

As discussed in Sec. 3.5, we can decompose any unitary operator U
acting on a N = 2"-dimensional Hilbert space into the product of O(N?)
operations, each only acting non-trivially on two-dimensional subspaces.
More precisely, we can write (see Reck et al., 1994)

U= DV 1Va1VaaVa1---Vasz---VNiVnz-- VN n—2VNnnN-1, (8.84)

where V,, 4 differs from the /N-dimensional identity matrix only in the matrix
elements qq, ¢p, pq, pp, here given by the beam splitter matrix (8.79), and
D is a N x N diagonal matrix, with diagonal matrix elements of unit
modulus. As shown in Fig. 8.29, transformation (8.84) can be implemented

¢ N(N

by means of a triangular array o Y heam splitters plus N phase

shifters. The top left beam splitter in thls figure realizes Vv, y—1 and so on
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4
=

A 4

Fig. 8.28 The Mach—Zehnder interferometer. The two beam splitters stand for the
circuit in Fig. 8.27 (left); that is, they implement Hadamard gates.

up to the top right beam splitter, realizing V5 ;. Finally, the phase shifters
implement the diagonal matrix D. Therefore, any n-qubit quantum circuit
can be simulated by a single-photon optical setup with N = 2™ optical
paths. Note that the number of optical devices (beam splitters and phase
shifters) grows exponentially with n. This is the price to pay because qubit—
qubit interactions are not included in this model; that is, entanglement
is not generated (see also Sec. 3.2 for a discussion of the importance of
entanglement in quantifying the resources required for computation with
waves).

Mirror

1

Fig. 8.29 A linear optics network implementing any N X N unitary matrix.
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In non-linear optics the two-qubit CMINUS gate could, in principle,
be implemented by taking advantage of the indirect interaction between
photons, mediated by atoms in a Kerr medium. As a result, the refractive
index n is a linear function of the total intensity I of light crossing the
medium (n(I) = ng+nal), so that an extra phase shift ¢ o« noL is acquired
if two photons propagate simultaneously through a Kerr medium of length
L. If the medium is long enough to obtain ¢ = 7 and the case in which both
photons cross the medium corresponds, in the dual-rail representation, to
the two-qubit state |11), then the CMINUS = CPHASE(7) gate is realized.
The drawback is that in Kerr media it is difficult to obtain ¢ = 7 before
photon loss due to absorption becomes important.

As shown in Knill et al. (2001), see also Raussendorf and Briegel (2001),
linear optics could be used in principle to implement an efficient quantum
computation, provided we can detect photons and feed the results of mea-
surements back to control future linear gates. This leads to probabilistic
gates, see for instance exercises 8.25 and 8.26. Even though these gates
are not unitary, it is possible, using quantum teleportation and quantum
error correction as basic ingredients, to approximate unitary operations
efficiently.

Exercise 8.25 Non-linear sign shift. Let us consider the quantum circuit
drawn in Fig. 8.30, where the initial state is

al)2
[0} = (al0)+511) 4212 10) = (a+ el +9L21- ) o} joo0) (5.59

and the unitary transformation

1 3o
V2 V2
1 1 _ 1
VV2 2 V2
/3 11 1
W_Q 2 V2 \/5_5
Note that U can be realized using beam splitters and phase shifters as in

Fig. 8.29. The circuit is probabilistic; that is, we accept the output [¢)
if and only if we measure a single photon in mode 2 (second line in the

=

U = (8.86)

N[=

circuit) and vacuum in mode 3 (lower line). Show that this measurement
outcome is obtained with probability i and that

[¥') = al0) + B1) —~2). (8.87)
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The state [¢') only differs from |¢) in the sign of the coefficient in front
of the two-photon state |2). The transformation «|0) + 5|1) + v|2) —
a|0) + B|1) — v|2) is known as a non-linear sign-shift gate.

W) — ¥

>— U D 1

10> — D|O

Fig. 8.30 A quantum circuit implementing the non-linear sign-shift gate.

Exercise 8.26 Show that the circuit in Fig. 8.31 implements a proba-
bilistic CMINUS gate, the probability of success being %.

1

|9,
2

S el S

|¢2> 4

NS

Fig. 8.31 A quantum circuit implementing a probabilistic CMINUS gate using two non-
linear sign shift gates (N'S) and two beam splitters with ¢ = 0 and 6 = 7 (left) or 6 = — %
(right). The initial states of the two qubits are encoded in the dual-rail representation:

|$1) = @|0) + B|1) = @|0)1[1); + BI1)110); and [¢2) = 7|0) +6]1) = ¥|0)3|1)4 +6|1) 5[0},

8.5.2 Experimental quantum teleportation

In this section we describe two experimental implementations of the tele-
portation protocol based on linear optics. In both cases the EPR states
required by the protocol are photon pairs generated by parametric down-
conversion. This phenomenon takes place when a laser beam passes
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through a non-linear crystal such as (-barium borate (BBO). Inside the
crystal, an incoming pump photon can be converted into two photons
of lower energy, one polarized vertically and the other polarized horizon-
tally, conserving total energy and momentum.' In so-called type II down-
conversion the photons are emitted along two cones (one photon per cone,
see Fig. 8.32), corresponding to horizontally and vertically polarized pho-
tons. If the two photons travel along the cone intersections, neither photon
has definite polarization. This corresponds to the entangled state

5 ([0)11h)s + € |h) 1 [v),), (8.88)
where |h); and |v), denote the horizontal and vertical polarization states
of photon ¢ (i = 1,2) and the relative phase « arises from the crystal
birefringence.

CRYSTAL

LASER BEAM

Fig. 8.32 Generation of entangled states by parametric down-conversion. The figure is
taken from Zeilinger (2000).

The Rome experiment. In the Rome teleportation experiment (Boschi
et al., 1998) a total of two particles (photons) instead of three are used.
The EPR state is realized by spatial entanglement, while the state to be
teleported is encoded in the polarization degree of freedom of one of the
two photons.?°

OTf (wp, kp), (w1,k1), (w2, k2) denote angular frequencies and wave vectors of the
pump photon and of the two down-converted photons, then the relations wp = w1 + w2
and k, = k1 + k2 hold.

20Note that two-photon hyperentangled states can also be generated; that is, states
exhibiting entanglement in different degrees of freedom (for instance, both in polarization
and spatial degrees of freedom), see Cinelli et al. (2005) and Barreiro et al. (2005).
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The experimental setup is sketched in Fig. 8.33. Polarization entangled
photons are created by parametric down-conversion, using a G-barium bo-
rate (BBO) crystal pumped by an ultraviolet (UV) laser with wavelength
351.1nm. The down-converted photons have a wavelength of 702.2nm and
their EPR state is

L ([0)alh)s + [ [o),)- (8.89)

Fig. 8.33 A scheme showing the Rome teleportation experiment. The figure is reprinted
with permission from Boschi et al. (1998). Copyright (1998) by the American Physical
Society.

The two photons follow paths a; and b, and pass through calcite crys-
tals (C), whose purpose is to transform the entangled polarization state
(8.89) into an entangled spatial (path) state. Indeed, crystals C split the
two polarization components of the photons: the vertical components are
transmitted while the horizontal components are reflected, pass through the
BBO crystal and follow paths by and as. This corresponds to the following

Hyperentangled photons exhibit quantum stronger non-locality effects than EPR photon
pairs, see Barbieri et al. (2006).
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substitutions in (8.89):

[ = lan)v)r,  [P)y = [b2)[h)s,

(8.90)
[v)y = [b1)v)y,  |h)y = laz)lh)y,

where |a1)|v),, for instance, represents the state of photon 1 in path a;
and having vertical polarization. Note that from now on index 1 refers to
the photon directed to Alice’s laboratory, while index 2 denotes the photon
travelling to Bob’s laboratory. Using (8.90), state (8.89) becomes

7 (lan)laz) + [b1)[b2))[0),[R), (8.91)

so that the entanglement has been transferred from polarization to spatial
degrees of freedom.

In order to prepare a generic state to be teleported, alv); + 3|h);, po-
larization rotators (A/4 plates and R(f) Fresnel rhombuses in Fig. 8.33) act
in the same manner on the two paths a; and b; that can be followed by
photon 1. Therefore, the state of the entire system reads

7 (lan)]az) + [b1)[b2)) (efv)y + BlR)y) ), (8.92)

As described in Sec. 4.5, a Bell measurement performed by Alice is
required at this stage of the teleportation protocol. The analogous of the
Bell states |¢T), [1T) are

lex) = 25 (lan)lo)y £ b)lR)y),  lde) = 5 (la)|h)y £ [b1)v),). (8.93)

Alice must perform a (Bell) measurement on the basis {|cy), |d+)}. For this
purpose, the polarization of path by is further rotated by 90° (by means of
the A/2 plate in Fig. 8.33), so that

b)[v)r = =[b)[h)1,  [o0)[h)y — [by)[v)y. (8.94)

Therefore, the states of the Bell basis are transformed as follows:

lex) = 5 (la) £ b1)) v}y, |de) — 5 (lar) F 1)) IR);. (8.95)

Paths a; and b; impinge on the beam splitter BS. This is a 50:50 beam
splitter, namely 6 = T in (8.79). The position Az of BS is set so that the two
output states are \/—12 (Ja1)+]b1)) and \/—12 (Ja1)—|b1)). Note that at the beam
splitter BS the two polarizations h and v interfere independently. They are

separated by the two polarizing beam splitters PBS. In this manner all
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four Bell states |cy) and |d4) are measured by detectors Dji and Da_,
respectively.

Bob’s photon is reconstructed on a single path by means of a plate (\/2)
and a polarizing beam splitter (PBSg) oriented to transmit horizontal and
reflect vertical polarizations. It can be seen that the state of the entire
system (before Alice’s measurement) becomes

slex)(@lv)y + Blh)y) + gle-) (alv), — BlR),)
+ %|d+>(6|v>2 + a|h>2) + %|d_>(6|v>2 - a|h>2).

The original state «|v) + S|h) is teleported without need of an addi-
tional unitary transformation when Alice detects |c4); that is, when de-
tector Dﬁ+ clicks. This is in agreement with the experimental results of
Fig. 8.34. Bob’s measuring axis is changed by means of a plate (A/4) and a
polarization rotator (Rp(fp)). The four coincidence experiments between
Alice’s detectors D4, and DLi and Bob’s detector Dp(#) are shown in
Fig. 8.34. The initial state is linearly polarized with 6 = 22.5° (o = sin8
and 8 = cosf). All maxima in the coincidence rates are compatible with
Eq. (8.96).

We stress that in the Rome experiment it is impossible to teleport a part
of an entangled state; that is, the scheme of Boschi et al. (1998) cannot be
used as a primitive for quantum computation in a larger quantum network,
as proposed by Gottesman and Chuang (1999). This would become possible
if one had the ability to swap any unknown state onto the polarization
degree of freedom of Alice’s member of the EPR pair. However, this requires

a two-qubit gate; that is, qubit—qubit interactions. This is beyond linear
21

(8.96)

optics, which deals with non-interacting photons.

The Innsbruck experiment. We now discuss the Innsbruck teleporta-
tion experiment (Bouwmeester et al., 1997). A schematic drawing of the
experimental setup is shown in Fig. 8.35. A pulse of ultraviolet radiation
passes through a non-linear crystal and by parametric down-conversion cre-
ates two entangled photons in the state

[P )og = é(|h>2|”>3 — [v)5lh)3), (8.97)

where the indices 2 and 3 refer to the paths followed by the two photons
(see Fig. 8.35). After retroflection the beam passes through the crystal a

21 As mentioned in Sec. 8.5.1, two-qubit gates can be implemented with linear optics,
provided that the results of photon measurements are used to control future quantum
gates.



First Exzperimental Implementations 583

Ll I T T T

1
D, ND(6,)

dence rate (s™)

inci
A

Co
S

0
-90° -45° 0° 45° 90° 135° 180°

Fig. 8.34 Coincidences between Alice’s four detectors D4, , Dji and Bob’s detector

Dp(0p) as a function of Bob’s measurement angle 6. The figure is reprinted with
permission from Boschi et al. (1998). Copyright (1998) by the American Physical Society.

second time and, again by parametric down-conversion, generates a second
entangled pair of photons, this time propagating along paths 1 and 4. The
detection of photon 4 allows us to know when the second pair is emitted and
projects photon 1 into a single-qubit state. A polarization rotator prepares
the initial state |[¢)); = «|h); + B|v); of photon 1. The purpose of the
experiment is to teleport this state to Bob’s laboratory.

A complete Bell measurement is required in the teleportation protocol
By definition, such measurement should be able to distinguish with 100%
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Fig. 8.35 A scheme showing the Innsbruck teleportation experiment. The figure is
reprinted with permission from Bouwmeester et al. (1997). Copyright (1997) by Macmil-
lan Publishers Ltd.

efficiency between the four orthogonal Bell states

|¢+>12 = ﬁ(|h>1|h>2 + |"U>1|"U>2) )
- = L —|v){|v
07012 = 5 (1h1|h)2 = [v)1v)2) (3.98)
[9F ) = ﬁ(|h>1|”>2 +[0)11R)s) 5
[V )1p = ﬁ(|h>1|v>2 - |U>1|h>2) .

A complete Bell measurement is impossible with only linear optical elements
(see exercise 8.27). In particular, in Bouwmeester et al. (1997) only the Bell
state |17 ), is identified. Since the four Bell states are found with equal
probability (see Eq. (4.37)), teleportation is achieved in only a quarter of
the cases.

Let us explain why it is possible to single out the state |¢)~);,. We first
consider the effect of Alice’s beamsplitter on 1)~ );,. We call a;f’h and a;v
the operators creating a horizontally or vertically polarized photon in the
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spatial mode i (¢ = 1,2). Therefore,

|¢_>12 = é (a'{,ha;v - a'{,va;h) |0>5 (899)

where |0) is the vacuum states. A beam splitter (see Eq. (8.79)) with 6§ =
and ¢ = —7 transforms this state into

77 (0] b8, — b1 0% ,)10), (8.100)
where the operators b; , and b;v create photons in the output modes. (op-
erators a and b are related via the mapping (8.80)). Therefore, Alice’s
detectors f1 and f2 both register a photon. For the other Bell states (1)),
|¢p1), |¢7)) the two photons leave the same output port (see exercise 8.27).
This is a manifestation of the fact that the singlet state [1)~) is the only Bell
state that is antisymmetric under exchange of the polarization states of the
two photons. Since photons are bosons, the wave function must be globally
symmetric and therefore it must also be antisymmetric under exchange of
the spatial variables: due to the antisymmetric nature of the spatial part of
the wave function the photons emerge one on each side of the beam split-
ter. In contrast, the triplet states (J¢T), |¢T), |¢)) are symmetric under
exchange of polarization or spatial states of the two photons. Owing to the
symmetric nature of the spatial part of the wave function, in this case both
photons leave the same output port.

Exercise 8.27 Show that |¢") and |¢~) cannot be distinguished after a
beam splitter. Can they be distinguished from the other Bell states?

In summary, if the Bell state |¢p~),; is prepared and Alice mea-
sures |0 );,, then teleportation succeeds and Bob ends up with the state
|t))3 = alh)s+ B|v)5. The polarization of Bob’s photon is analyzed by pass-
ing it through a polarizing beam splitter. The experimental results in the
cases in which the photon state to be teleported is polarized at £45° are
shown in Fig. 8.36. Bob’s polarizing beam splitter selects —45° (detector
dl) and 4+45° (detector d2) polarization. Teleportation succeeds, for an
initial state polarized at +45°, if only detector d2 clicks when both f1 and
2 click. On the other hand, only three-fold coincidences f1f2d1 should be
registered when the initial polarization of photon 1 is —45°. This argument
is valid if photons 1 and 2 cannot be distinguished at Alice’s beam splitter
by their arrival times; that is, if they are generated within a time smaller
than the coherence time of the source (approximately 500 fs). This condi-
tion can be met or violated by changing the delay between the first and
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the second parametric down-conversion by moving the retroflection mirror
(see Fig. 8.35). Outside the region of teleportation, photons 1 and 2 go
either to f1 or to f2 independently of each other, so that the probability of
detecting an f1f2 coincidence is 50%. In this case, photon 3 is completely
unpolarized because it is a part of a Bell pair and therefore d1 and d2 have
the same chance of receiving a photon. This analysis predict a 25% proba-
bility both for the three-fold coincidence f1f2d1 and f1f2d2, independently
of the polarization state of photon 1. In conclusion, a dip in one of the
two possible three-fold coincidences is expected in the teleportation region,
while outside this region both coincidences have the same probability. This
expectation is confirmed by the experimental data of Fig. 8.36.

+45® talepartation -45° teleportation
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Fig. 8.36 Measured three-fold coincidence rates between Alice’s detectors f1 and {2 and
Bob’s detectors d1 (+45°, top) and d2 (—45°, bottom), in the cases in which the photon
to be teleported is polarized at +45° (left) or —45° (right). The coincidence rates are
plotted as a function of the delay between the two-photon pairs, changed by translating
the retroflection mirror in the setup of Fig. 8.35. The figure is reprinted with permission
from Bouwmeester et al. (1997). Copyright (1997) by Macmillan Publishers Ltd.

In closing this section, we remark that both the Rome and Innsbruck
experiments were performed in a single laboratory, so that teleportation
was limited to a distance of the order of 1 m. Long-distance teleportation
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has been more recently reported in Marcikic et al. (2003) and in Ursin et al.
(2004). In this latter experiment a member of the required EPR pair was
transmitted through an 800-metre-long optical fibre installed underneath
the Danube river in Vienna.

Exercise 8.28 Universal NOT gate. By definition, the universal NOT
gate maps any one-qubit input state |¢)) into its perpendicular state [1)).
In the Bloch sphere representation, the states [1/) and |¢)) are antipodes;
that is, the universal NOT maps the Bloch coordinates (z,y, z) of the state
|¢)) into (—z,—y,—z). Note that a perfect universal NOT operation is
prohibited by the laws of quantum mechanics. However, there exists an
optimal approximation with fidelity F = % (see Buzek et al., 1999).

Let us consider the following modification of the teleportation protocol
described in Sec. 4.5: Alice sends Bob a single bit of classical information,
saying if she obtained [¢)") or one of the states [¢v~), |[¢T), |[¢~) from her
Bell measurement. Show that in the second case Bob ends up with an
approximate universal NOT transformation of the state [¢), with fidelity
F = % Note that here, in contrast to the original teleportation protocol,
Bob does not perform any operation on his qubit.

Exercise 8.29 Consider the teleportation protocol with initial condition
[)|T) (see Sec. 4.5) and assume that Alice performs a measurement ca-
pable of distinguishing between the Bell state [1)") (first outcome) and the
subspace spanned by the Bells states [¢)7), [¢T), [¢~) (second outcome).
Show that, if the second outcome occurs, then the post-measurement state
of each of Alice’s two qubits is a clone of the initial single-qubit state |¢),
with fidelity F = 5 (see Ricci et al., 2004).

8.5.3 Experimental quantum-key distribution

Quantum cryptography (or more precisely, quantum-key distribution)
promises to become the first quantum-information protocol to find com-
mercial applications, thanks to the enormous progress in the technology of
optical-fibres and free-space optical communication.

Optical quantum cryptography is based on single-photon Fock states,
emitted on demand. Unfortunately, these states are difficult to realize ex-
perimentally. However, single-photon Fock states can be approximated by
means of faint laser pulses: a laser produces a coherent state, given by
Eq. (8.36), and this state is attenuated to a very low mean photon number
i < 1. For instance, if 7 = 0.1 (a value chosen by most experimental-
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ists in quantum cryptography implementations), the coherent state (8.36)
reads |a) ~ 0.95|0) + 0.30|1) + 0.07|2) + ..., where a = v = V0.1,
This means that most pulses are empty: the probability that the attenu-
ated coherent state contains no photons is py &~ (0.95)? ~ 0.90 ~ 1 — 7.
A single photon is found with probability p; ~ (0.30)?> = 0.09. There-
fore, the probability of having a non-empty pulse is p(n>0) = 1 — pg and
the probability that a non-empty pulse contains more than one photon is
p(n>1n>0) = p(n>1)/p(n>0) = (1 —po — p1)/(1 —po) = /2 = 0.05 (this
means that 5% of the non-empty pulses contain more than one photon).
Single photons are typically detected by means of semiconductor avalanche
photodiodes (APD’s). Note that the detectors must be active for all pulses,
including the empty ones. Therefore, the problem of dark counts (that is,
when there is a click in a detector without an arriving photon) becomes
more important when 7 is small.

Fibre-based and free-space systems. Photons can be transmitted from
the sender (Bob) to the receiver (Alice) using optical fibres or free space as
quantum channels (of course, such channels are only described as quantum
because they are intended to transmit the quantum information encoded
in single photons). Let us briefly discuss the advantages and drawbacks
of both approaches. Long-distance optical-fibre transmissions exploit the
low loss of silica fibres in the 1.3 and 1.55 um wavelength bands. A further
advantage is the possibility to employ standard fibres installed for classical
communications. On the other hand, free-space applications are also pos-
sible. In this case, the emitter and the receiver are connected by telescopes
pointing at each other (spectral filtering is used by the receiver to cut light
outside the transmission bandwidth). A significant advantage of free-space
quantum cryptography is that transmission over long distances is possible in
a transmission window around 800 nm. In this window commercial photo-
detectors (silicon avalanche photodiodes) have high detection efficiency, up
to approximately 70%, and low noise. In contrast, at the wavelengths used
in optical fibres silicon APD’s are not efficient and one can take advantage
of APD’s made from germanium or indium gallium arsenide (with detection
efficiency < 15%). A disadvantage of free-space quantum cryptography is
that its performance strongly depends on weather conditions and air pol-
lution. On the other hand, a major advantage of this approach is that it
could offer the possibility to overcome the distance limitations of fibre-based
quantum cryptography. Actually, the main drawback with quantum com-
munication via optical fibres is that the probability for photon-absorption
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losses grows exponentially with the length of the fibre. On the basis of
present technology, it appears difficult to employ optical fibres for quan-
tum communication over distances of more than 100 kilometres.?? In con-
trast, the free-space approach could be extended to much longer distances,
provided earth-to-satellite links were established. A significant advantage
of satellite links is that the photon attenuation of a link from the earth
directly upwards to a satellite is comparable to approximately 1.5 km hori-
zontal transmission on ground. These latter transmissions are possible and
this suggests the possibility to employ free-space photon transmission to
distribute secret keys between parties located very far apart (say, in two
different continents), using satellite-based links.

Polarization and phase coding. A natural method to code the four
states of the BB84 protocol is to employ photons polarized at —45°, 0°,
+45° and 90°. For each pulse, Alice can rotate the polarization of one
of these four states by means of electro-optic crystals (Pockels cells). Bob
analyzes each photon in the vertical-horizontal basis or in the diagonal
basis. If, for instance, a photon polarized at +45° is sent and the measure-
ment takes place in the diagonal basis, then the outcome is deterministic.
On the other hand, if Bob chooses the horizontal-vertical basis, he ran-
domly obtains one of the two possible outcomes. The main difficulty of
this scheme is to maintain the photon polarization through the quantum
channel connecting Alice and Bob. It is difficult to compensate for the po-
larization transformation induced by a long optical fibre since it is unstable
over time, due, for instance, to temperature variations. Note that polariza-
tion coding is instead successful when used for free-space transmission over
long distances.

Phase coding has proved to be more convenient for fibre-based imple-
mentations. The basic setup, drawn in Fig. 8.37, is an optical-fibre version
of the Mach—Zehnder interferometer. It consists of two symmetric couplers
(the equivalent of 50:50 beamsplitters) connected by two arms, each with
a phase modulator (that is, a phase shifter). Alice and Bob can tune the
phase shifts ¢4 and ¢, respectively. The “letters” used in the BB84 proto-
col (see Sec. 4.3.1) correspond to ¢ = 0,7 (first “alphabet”) and ¢ = 7, 37”
(second alphabet). Alice randomly applies one of the above four phase shifts
to encode a bit value (she associates 0 and § with bit value 0 and 7 and %w

22Quantum repeaters; that is, quantum purification schemes aimed at improving the
fidelity of the transmitted photons (see Briegel et al., 1998), would overcome this limi-
tation. In principle, quantum repeaters could extend quantum communication to arbi-
trarily long distances. However, they have not yet been demonstrated experimentally.
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with 1). On the other hand, Bob randomly chooses the measurement basis
by applying a phase shift of either 0 or 5. When |¢p4 —¢p| = 0,7, then Bob
obtains with unit probability a deterministic output (see exercise 8.24). On
the other hand, when the phase difference is equal to § or %7‘(, then the
photon is found with equal probability in one of Bob’s two detectors.

Bob

_/

1PM 4, |

—
{PM ¢, ;

Alice

| ngye
APD
X nqw

Fig. 8.37 A schematic drawing of an optical-fibre Mach—Zehnder interferometric setup
for quantum cryptography. Photon pulses are emitted by a laser diode (LD) and then
attenuated and sent from Alice to Bob by means of optical fibres; phase modulators
(PM) of phase ¢4 and ¢p are used in Alice’s and Bob’s laboratories; an avalanche
photodiode (APD) is used to detect the photon in port 0 or 1. The figure is reprinted
with permission from Gisin et al. (2002). Copyright (2002) by the American Physical
Society.

Note that the phase-coding scheme works inasmuch as the path mis-
match kAL (k is the wave number and AL the difference between the
lengths of the two arms) is much smaller than the photon wavelength (of
order 1pm). This condition cannot be fulfilled when Alice and Bob are
separated by long distances. For this reason the configurations in Fig. 8.38
with two unbalanced Mach—Zehnder interferometers is used. In this case
the two interferometers, one in Alice’s laboratory and the other in Bob’s,
are connected by a single optical fibre. When monitoring counts as a func-
tion of time from photon emission, Bob observes three peaks (see the inset
in Fig. 8.38). The left/right peak corresponds to photons that travel along
the short/long path in both Alice’s and Bob’s interferometers. The central
peak is instead associated with photons that choose the long path in Alice’s
interferometer and the short path in Bob’s or vice versa. As these two pro-
cesses are indistinguishable, they produce the interference required in the
phase-coding scheme. The advantage of this system is that it is sufficient
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to keep stable within a small fraction of the photon wavelength the imbal-
ances of Alice’s and Bob’s interferometers and not the path difference over
a long distance as in the previous scheme of Fig. 8.37. Using this approach,
quantum-key distribution over 67 km (between Geneva and Lausanne) with
a net key rate of approximately 50 Hz was reported in Stucki et al. (2002).

Bob

Fig. 8.38 A schematic drawing of a double Mach-Zehnder interferometer for quantum
cryptography. The inset shows the temporal count distribution recorded as a function of
the time passed since emission of a pulse by Alice (interference is observed in the central
peak). The figure is reprinted with permission from Gisin et al. (2002). Copyright (2002)
by the American Physical Society.

In closing this section, we note that quantum-key distribution experi-
ments using entangled photon pairs have also been performed. For instance,
Jennewein et al. (2000) reported key generation over a distance of 360 m
with a rate of 400 — 800 Hz and a bit error rate of 3%.

8.6 Problems and prospects

It appears probable that in the near future quantum cryptography will
be the first quantum-information protocol to find commercial applications.
Here the question is how extensive the market will be and this will largely
depend on the transmission rates, at present limited to the kHz range. The
development of fast single-photon sources and high-efficiency detectors is
required to improve significantly the transmission rates, thus broadening
the prospects of quantum cryptography.

With regard to quantum computation, the situation is much more diffi-
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cult. It is not clear if and when we shall be able to build a useful quantum
computer; that is, a quantum computer capable of outperforming existing
classical computers in important computational tasks. When the problem
of decoherence is taken into account for a complex many-qubit system,
which we require to perform coherent controlled evolution, then large-scale
quantum computers appear unrealistic with present technology. On the
other hand, we should bear in mind that technical breakthroughs (such
as the transistor was for the classical computer) are always possible and
that no fundamental objections have been found against the possibility of
building a quantum computer.

At any rate, even the first, few-qubit demonstrative experiments are re-
markable, not only for quantum computation but also for addressing funda-
mental questions on quantum mechanics, such as the nature of the frontier
between quantum and classical worlds or the nature of quantum entangle-
ment in complex many-body systems.

It is also important to emphasize that basic research in the field of
quantum information is strictly related to the emergence of quantum tech-
nologies such as quantum based sensors and clocks. For instance, entangled
states could be used to improve the resolution of optical lithography and
interferometric measurements.

The time when a quantum computer will be on the desk in our office
is uncertain. What is certain is that we are witnessing the emergence of a
new and very promising field of investigation in physics, mathematics and
computer science.

8.7 A guide to the bibliography

The experimental effort in the field of quantum-information processing is
huge and has produced beautiful experimental results. In the following, we
shall limit our references to review papers that might be used by the reader
as an entry point.

NMR quantum-information processing is reviewed in Jones (2001),
Laflamme et al. (2002) and Ramanathan et al. (2004). NMR quantum-
control techniques (many of them also useful in other implementations of
quantum computation) are discussed in Vandersypen and Chuang (2004).

Cavity quantum electrodynamics experiments manipulating the entan-
glement of Rydberg atoms and photons are reviewed in Raimond et al.
(2001); for discussions of CQED in the optical domain see Mabuchi and Do-
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herty (2002), Miller et al. (2005) and Raimond and Rempe (2005). Quan-
tum computation with trapped ions is discussed in Wineland et al. (2003),
Blatt et al. (2004) and Eschner (2006). Quantum computing and quantum
communication with quantum optical methods are discussed in Cirac et al.
(2002). An introduction to the experimental aspects of quantum informa-
tion with neutral atoms in optical lattices is provided in Bloch (2006); see
also Arimondo et al. (2005). The prospect of cold atoms in atom chips is
discussed in Schmiedmayer and Hinds (2005). Tutorial reviews on quantum
information processing with atoms, ions and photons are Monroe (2002)
and Cirac and Zoller (2004).

Linear optic quantum computation is discussed in Myers and Laflamme
(2006) and Kok et al. (2005). Quantum optics implementations with con-
tinuous variables are reviewed in Braunstein and van Loock (2005).

Spin qubits in semiconductor quantum dots are described in Elzerman
et al. (2006). A very readable introduction is Burkard and Loss (2002).
Superconducting quantum bits are reviewed in Averin (2000), Makhlin et
al. (2001), Devoret et al. (2004), Esteve and Vion (2005), Wendin and
Shumeiko (2005) and Falci and Fazio (2006); for a simple introduction see
You and Nori (2005); for a discussion of the state of the art and prospects
of this implementation see Mooij (2005).

Quantum cryptography is reviewed in Gisin et al. (2002).

Finally, we point out that the prospects of quantum computation
and quantum cryptography are discussed in the roadmaps available at
http://qist.lanl.gov/. A report on current status and prospects
of quantum information processing and communication is available at
http://qist.ect.it/.
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Appendix B

Solutions to the exercises

Chapter 5

Exercise 5.1 The most general 2 x 2 Hermitian matrix A can be written as

a b+ic

, B.1
b—ic d (B.1)

where a, b, ¢ and d are real parameters. We have A = ol + o, + yo, + do,
provided o = (a+d)/2, 6 = (a—d)/2, 3 = b and v = —c. Therefore, a, 3, v and
0 are all real.

. 2 _ 2 2 _ _ _
Exercise 5.2 We have 0; = 0, = 07 = I and 0,0y = i0:, 0yo, = 10, and

0.0, = i0y. A compact method to express these relations is

3
0j0K = 5jkl+’izﬁjkl0'l7 (BQ)
=1

where 01 = 0z, 02 = 0y, 03 = 0, and €;y; is the Ricci antisymmetric tensor,
with €1 = 0 if the three indices are not all different, €123 = €231 = €312 = 1 and
€213 = €321 = €132 = —1. As Tr] = 2 and Tro; = 0, we obtain from Eq. (B.2)
Tr(ojok) = 20k.

Exercise 5.3 Let r1 = (ri1,712,713) = (z1,y1,21) and r2 = (r21,722,723) =
(22,y2, z2) denote the Bloch vectors associated with the density matrices p; and
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po, respectively. We obtain by direct computation

prp) =35I +r1-0)5(I+r2-0)—3(I+r2-0)3(I+ri-0)
1
I

=zllri-o)(re-0)—(r2-0)(r1-0)] = izﬁﬂ%("f"k —ok03)
jk
_ izrla’r%[aﬂ"ak] = iZQiejle'leQkal
Jk Ik

= L (z1y2 —y122) 02 + 3 (Y122 — 21y2) 0 + 1 (2122 — 122) 0. (B.3)

Thus, [p;,ps] = 0 when the conditions z1y2 — y1z2 = 0, Y122 — z1y2 = 0 and
2122 — x122 = 0 are simultaneously satisfied; that is, when 71 and r2 are parallel.

Exercise 5.4 The reduced density matrix p,, defined by Eq (5.51), is Hermi-
tian since

(pl);i = ija;m = Zpia;ja = (p1)ij- (B.4)
[e3 [e3

To show that p, is non-negative, it is convenient to decompose the total density
matrix p in the basis of its eigenvectors {|ug);|vy)o}:

p= Zka%k"f|uk>1|UW>2 1{ukla(vyl, (B.5)

k,y

with eigenvalues pg;xy > 0, as the density matrix p is non-negative. Then, for
any |¢>1 € H17

(olp1|d)y = Zzpkw;kv|1<¢|k>1|2 2 0. (B.6)
v k

Finally, p; has unit trace since

Z(pl)u = Zpia;ia = 1. (B7)

i

Exercise 5.5 In the teleportation protocol, as a result of Alice’s measurement,
the state of Bob’s qubit is left, with equal probability p = i, in one out of the
four following possibilities: «|0) + §|1), «|0) — B|1), a|1) + 5]|0) and «|1) — §|0),
where «|0) + (|1) is the state to be teleported. Therefore, Bob’s density matrix
is given by

N L B
B 4 Ba* |ﬂ|2 4 7[306* |ﬂ|2
| 181 Bar | I8P =Bt |
+Z ﬂ*OL |C¥|2 +4 |:ﬂ*06 |C¥|2 :| - 21' (B8)
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As pg = %I , Bob cannot obtain any information on the state to be teleported
from any measurement performed on the qubit in his possession.

Exercise 5.6 For a pure bipartite separable state, we can write

[¥) = la), ©[8),- (B.9)

Hence, the corresponding density matrix is given by

p = )] = |a)118)2 1{al(B] = o)y 1{a]l ®18), (Bl (B.10)

After partial tracing, we obtain

py = Try (|O‘>1 1{a] ®|8), 2<ﬁ|> = |a); 1(al,

(B.11)
py = Try (|O‘>1 1<a| ® |ﬁ>2 2<ﬁ|> = |ﬁ>2 2<ﬁ|7

and therefore
p = p1 &Py (B.12)

Exercise 5.7 Let us first consider the preparation of the two bottom qubits
in Fig. 5.1, initially prepared in the state |00). To simplify writing, we adopt
C; = cosf; and S; = sin#;. After application of the first rotation matrix we
obtain the state

C1]00) + S1/10). (B.13)
The first CNOT gate leads to
C1]00) + S111), (B.14)
the second rotation to
C1C2|00) 4+ C152]01) — S152]10) + S1C2|11), (B.15)
the second CNOT to
C1C2|00) 4+ C152]11) — S152]10) + S1C2|01), (B.16)

and the third rotation to

C1C2C3]00) + C1C255]10) — C15253|01) + C152C3(11)
+ 515253]00) — S152C5|10) + S1C2C5|01) + S1C253|11).

From (5.63) we have C1 = %, Cy = %, Cs = \/%, S1 =14/ ‘25\/;1,

So = 3*6‘/5 , 93 = ‘25\/;2 Inserting these numerical values in (B.17) we obtain

the state vector (5.64).

(B.17)
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We now discuss the copying part of the circuit in Fig. 5.1. The four CNOT
gates map the state

(l0) + BI1)) 75 (2/00) +[01) +[11)) (B.18)

into (5.65). Tracing over the bottom qubit in Fig. 5.1 we obtain the two-qubit
density matrix

iz = [ay/3100)+ 52 (10) +100) ] [a*/F 001+ 5°/F (01 + 1)
+ (83 + a5 (10 + o) | [5y/3 11l +a7 /5 (a0l + o)
(B.19)

Hence

pr = Trypr2
21al?[0)(0] + FaB*|0) (1] + §1BI710)(0] + 3Ba”[1)(0] + §[8*|1)(1]

+ 21871 (1] + $8a” [1)(0] + §lal?[0)(0] + FaB*|0)(1] + Flal?[1)(1].
(B.20)

It is easy to see that this expression is equal to (5.68). Since the two-qubit density
matrix pi2 is symmetric under exchange of the two qubits, we have p, = p;.

Exercise 5.8 If the state |¢)) has Schmidt decomposition (5.82), then

P1 = Zl’i [i)11(il,  po = Zpi|il>2 2<il|7 P3 = Zpi|i">3 3<i"|~ (B.21)

This means that the reduced density matrices p,, p, and p; should have the
same spectrum. Therefore, to solve this exercise, it will be sufficient to provide a
counterexample. For instance, the state

|1/’> = %“01)12 + |10>12> ® |0>3 (B~22)

does not satisfy the requirement of equal spectra for p,, p, and p;. Indeed, this
state is the tensor product of a Bell state for the first two qubits and a separable
state for the third qubit, and therefore p; = 211, p, = 3l2, p3 = [0)55(0].
This means that p; and p, have eigenvalues p; = p2 = %, while p; has a single
eigenvalue equal to 1.

Exercise 5.9 Let us consider the system of equations (5.87), for the case in
which there is a two-qubit system and we add two ancillary qubits to purify it.
The two-qubit density matrix p; is a 4 x 4 matrix. Taking into account that
(p1)ji = (py)i; (4,5 =1,...,4) and that Trp, =1, p, is determined by 15 inde-
pendent real parameters. The pure state of the extended 4-qubit system depends
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on 16 complex coefficients ¢io (i, =1,...,4), namely on 32 real parameters, 30
of which are independent, taking into account the normalization condition and
the existence of an arbitrary global phase. Therefore, we have the freedom to set
30 — 15 = 15 real parameters. We take

Cl2 = C13 = Cl4 = C23 = C2q4 = €34 = 0 (B.23)

and the coefficients c22, css and caa real and positive. We now solve Eq. (5.87);
that is, we determine the coefficients c;, as a function of the matrix elements
(p1)ij- We obtain
(p)11 = D Clacia = cuicir. (B.24)
«@
We can exploit the existence of an arbitrary global phase to choose also c11 real
and positive, so that

ci1 = \/(p1)11- (B.25)
Then we obtain
(p1)12 = chacga = c11631, (B.26)
and therefore
o1 = (p1)12 _ (p1)12 ) (B.27)
c11
(p1)11
Similarly, we obtain
C31 = pl 13 C41 pl 14 (B.28)

\/ (p1)11 Y, (p1)11

Then we use

2
(p1)22 = Z C2aCha = [(pa)s2l” + |22 |? (B.29)
(p)11
to extract
2
c3s = | (py)as — L2112 (B.30)
(p1)11

We can now derive c32 and cs42 from the equations

(p1)23 _ (pl)IQ(p1)13 + (p1)22 _ |(p1)12|2 ng
P1)11 \ P1)11
(B.31)
_ (p)i2(py)1a S (VDIET
(p1) (p1)11 + \ (p1) o)
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Finally, we obtain cs3, ca3 and cq4 from the equations

(p1)33 = |031|2 + |(332|2 + |033|27
(p1)3a = 0:11011 + c32Chy + C33Ch3, (B.32)
(p1)as = Y leaal®.

a=1

Exercise 5.10 7T is positive since pj = 7(p,) = pi has the same eigenvalues
as p;, and is therefore non-negative as is p,. Let us now show that 7 is not
completely positive. The density operator p corresponding to the state (5.106) is
given by

P1E = %(|0>1 1<0| ® |1>EE<1| + |1>1 1<1| &® |O>EE<0|
+ 1001 11 © (1) 5 501 + 111 101 ©10) 5 (11 (B.33)
Therefore,

PllE = (T ®ZIe)(pke) = %(|0>1 (0] @ 1) g (1] + 1)1 1(1] @ [0) g (0]

+ 11110/ @ [1) g (0] +10), (1] @ 0) E<1|)'

(B.34)
The matrix representation of p}z in the computational basis is given by
0001
de=30 0 0], (B.35)
1000
whose eigenvalues are Ao = —3 and A1 = A2 = A3 = 3. Therefore, 7 ® I is not

positive, implying that 7 is not completely positive.

Exercise 5.11 The state of the system after having obtained n times the out-
come 0 from the generalized measurement (5.134) is given by

™) = a™0) +8"1)
a(1+ 3181701 10) + 8 (1 — La?0%)" 1). (B.36)

Q

We therefore obtain

g (=5 e?)"
[0}

= B.37
a(n) (1+ %|ﬂ|2 02)” ( )

Rl

~ exp(—% n@g)
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and, since |a(™|? + 3™ 2 =1

(n)|12 o |o¢|2 ()2 |ﬁ| exp( n02) 5
T e ey 1P S R ey P

The probability of obtaining outcome 0 at the n-th weak measurement, provided
the same outcome 0 was obtained in all previous measurements, is

™ = 1™ + 8™ cos? 0 = 1 — |3™]?6°. (B.39)

The probability that the outcome 0 is always obtained is

“+ oo +oo
po=]]r" =[] (1 - 1p™ )
n=0 n=0
+o0 2
|8]? exp(—nb?) 2
(- ap P e n@2>9)
“+oo

(1-
_ <|a|2 + 182 exp(=n6)(1 - e?))

|af? + |B]* exp(—n6?

Q

17 laf® + 18] exp[—(n + 1)6?]

- H |af? + |8]* exp(—nb?)

n=

_ <|a|2+|ﬁ|2exp< >) (|a|2 18P exp(~ 20%)

laf? + B[ la|? + [B]* exp(—62)
. lol* +18]” exp[—(n + 1)¢°] 2
= lim = . B.4
s a2 + | B)2 || (B.40)

Exercise 5.12 To find the maximum Shannon entropy, defined by Eq. (5.150),
we must solve the system

5 [ szlogpzk<2pzl>] =0, (j=1... k),
Pj i—1

Sh=t

i=1

(B.41)

where the Lagrange multiplier A is introduced to take into account the constraint
>, pi = 1. The system of equations (B.41) is solved for p1 = --- = px = 1/k.
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Exercise 5.13

k
|
log<%> logn! — Zlog(npi)!

i1 (ps)! i=1
k s
= nlogn — ==~ >~ [npi log(np; 3
nlogn Z np; log(np;) o
k
= fanilogpi = nH(p1,...,pk)- (B.42)
i=1

Note that, in order to apply Stirling’s formula, we have assumed that np; > 1,
for all 4.

Exercise 5.14 This quantum channel does not change the states sent by Alice,
and therefore we recover the special case § = 0 of the example discussed in
Sec. 5.11.2.

Exercise 5.15 The Bloch vectors ro = (0,0,1) and 1 = (0,0, —1), corre-
sponding to the states |0) and |1) sent by Alice, are modified by the quantum
channel as follows:

ro — To = To, r1 — 71 = (0,0,sin® 0 — cos” 0). (B.43)

Let po and p, denote the density matrices corresponding to the Bloch vectors 7
and 71, respectively. Notice that for # = 0 this quantum channel reduces to the
identity.

In order to compute the mutual information of Alice and Bob, we first need
the conditional probabilities

p(y|x) = Tr(/foy) (xvy = 07172)7 (B'44)

where the von Neumann projectors Fy and Fi are given by Eq. (5.207). If
we choose the measurement axis 7 in the (z,z) plane of the Bloch sphere (see
Fig. 5.11); that is, n = (sin 0, 0, cos §), we obtain

(1 + cosh), p(110) = % (1 — cos¥),

[1 —cos20cosf], p(1]1) = % [1+ cos26cosb)].

(B.45)

1
2
1
2

We now compute p(z,y) = p(z)p(y|z). We know that the states |0) and |1) are
sent by Alice with probabilities p(X = 0) = p and p(X = 1) = 1 — p, respectively.
Therefore, we have

p(07 O) =
p(L 0) =

SN

p (1 + cosf), p(0,1) = 1p(1 —cosb), (B.46)
(1—p)[1—cos20cosf], p(1,1) = % (1—p)[1+ cos26 cosb].
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Then we compute p(y) = > p(z,y) and obtain

p(Y =0) =
p(Y =1) =

{1+ cosfp— (1 —p)cos20]},

{1 —cosfp—(1—p)cos20]}. (BAT)

N|= N[

Finally, we insert the expressions derived for p(z), p(y), and p(z,y) into (5.201),
obtaining the mutual information I(X:Y").

A few examples of I(X:Y) as a function of the parameters p, 6, and  are
shown in Figs. B.1-B.3. As a general result, the mutual information is maximized
for measurements along the z-axis; that is, when § = 0, 7. This result is demon-
strated in Fig. B.1 for fixed p and 6. In Fig. B.2, we show that I = 0 when
0 = mw/2. This is quite natural since for § = 7/2 the quantum channel maps
the entire Bloch sphere onto a single point, namely the north pole of the sphere.
Therefore, whatever state Alice sends, Bob always receive the state |0). Hence,
there is no transmission of information. Finally, in Fig. B.3 we show the mutual
information as a function of p, for given 6 and 0.

0.4

0.3

0.1

0. 0.6

4 _
0/2m

Fig. B.1 The mutual information I(X:Y) for a message transmitted as described in
exercise 5.15, for p = 0.9, 6 = 7/8.

Exercise 5.16 For a separable state decomposition (5.232) holds. Therefore,

((20)?) = Tr ZpkpAk ® por(Ti)’
k

Zpk Tr[pAk ®PBk(Ei)2} = Zpk<(2’i)2>k7 (B.48)
k k

where (...), denotes the average over the density operator pra ® prs. We then



604

obtain

(Az:)%)
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o 02 04 06  os 1
0/(m/2)

Fig. B.2 The same as in Fig. B.1, but for p = 0.3, § = 0.

0 L 1 L 1 L 1 L 1 L
0 0.2 0.4 0.6 0.8 1

Y

Fig. B.3 The same as in Fig. B.1, but for § = 7/4, § = 0.

= el — (Z0)?
k

= Y0k [(@)) + 2000 (o) + (017)),] - (27
k

= Yook [(AcIV)), + (A0t + (SR - (Zm@»kf.
k
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Finally, we apply the Cauchy—Schwarz inequality (see Sec. 2.3)

sz Zpk <Zpk ) (B.50)

to see that the last two terms in (B.49) are bounded from below by zero. Hence,
%) 2> Y [((Ac)) + (A0, (B.51)
&
As this latter inequality is valid for ¢ = x,y, z, we obtain

(AZ)) +{(AZ,)%) + (AD)%) >
S pe[((AoL)u 4 (Aol (800,

AP, 4+ (Aol + (A0P)?),]. (B52)

Note that we have bounded from below a sum of variances of a two-qubit state
by a sum of variances of single-qubit states, which are quantities much easier
to compute experimentally. We now compute, for a single qubit, ((Aoy)?), +
((Acy)?), +{(Ac2)?),. After writing the single-qubit density matrix as in (5.32),
it is easy to check that

((A02)), + ((A0y)®), +{(A02)%), = 3= (a® +y° +27) > 2. (B.53)

Finally, we substitute this inequality into (B.52) and obtain (5.238). If a given
state pap does not satisfy the inequality (5.238), we can therefore conclude that
pAB is entangled.

In the case of the Werner state (5.235) we obtain by direct computation

(i) = Tr[(pw)anXi] =0, ((z0)?) = Tr[(pW)AB(Ei)Q} = 2-2p, (B.54)
with ¢ = z,y, 2. Therefore,
((A%2)%) 4 ((A%y)?) + ((A%.)?) = 6 —6p, (B.55)

so that the inequality (5.238) is satisfied when p < . We can therefore conclude
that the Werner state is entangled for % < p < 1. Note that the separability
criterion (5.238) is much easier to use in experiments than the Peres criterion
since it only requires that the single particle polarizations are measured. The
Peres criterion can instead be applied only after that the entire two-qubit density
matrix is reconstructed. Finally, we point out that a separability criterion for
continuous variable systems can be derived following the same procedure used in

this exercise (see Duan et al., 2000).
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Chapter 6
Exercise 6.1 The condition }_, E;Ek = I implies that

Z(fy,:l +aj-o)wl+tay o) =1 (B.56)
k

Using the relation (see exercise 3.6)
(a-o)b-o) =(a-b)I+ioc-(axb), (B.57)
we obtain

S lPI+Y hiakr+wail o+ (ai-o)(ak- o)
k k k

D wlPT+) iak +ykail o+ (ai-ar) +iy (ai xax) o
k k k

k
= I (B.58)

This implies that
ST+ (ahar) =1 (B.59)
k k

> (kak +ykai) =iy ax x aj. (B.60)
k k

It is convenient to employ the Bloch sphere representation (6.6) for p and p’ =
>, EpEf. We have

I+7r' 0= Z(’ka-l-ak'U)([-I-T'CT)(’YZI‘FGZ'U)

k
= > [l I +vai o+l (r-o) +(r-o)(ai - o) +viaw - o
k
+(ax - o)(aj - o) +7i(ar - o)(r- o) + (ar - o)(r - o)(aj - o)].

(B.61)

Let us examine the eight terms of the right-hand side of this equations separately.
The sum of the fourth and the seventh term simplifies as follows:

> [w(r-o)(ai - o) +ilar - o) (r- o)

k
= Z [Yk(r - ap)] +iveo - v X ap + 75 (r - ap)] +ivio - ap X 7]
k

= Z [(vear +viar) - rI +i(viar — yrai) X 7 - o], (B.62)
K
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The sixth term can be written as

Z(ak-o ajp - o) Z [(ar - ai)] +io - ax x a}]. (B.63)
% %

Finally, for the eighth term we have

Z(ak co)(r-o)(ay o) = Z {(ax-o)[(r-ap)] +io-r x a;]}

e e
= Z [(r-ai)(ar-o)+ilar-o)(r X aj-o)]
k

= Z{(’“'GZ)(ak'U)Jri[(ak'rXaZ)IJriUAak X (rxap)]}

k
=Y {(r-ai)(ax-o)+ilax v xai)l — o [(ax-ai)r — (ax-7r)ai]} .
' (B.64)
Note that we have used the relation
x (bxec) = (a-c)b—(a-b)c, (B.65)

with @ — ag, b — r, and ¢ — a}. After insertion of Egs. (B.62-B.64) into
Eq. (B.61), we obtain

T+7 0 = Y {InlI+(nai +ian) - o+l (r-0) + (eai +vian) -1
k
+i(year —ykap) xr-o+ (ar - ag)l +io -ar x ap + (r-ag)(ay - o)
+i(r-aj x ap)l — o - [(ar - ap)r — (ak - T)aj] } (B.66)

We can simplify Eq. (B.66) taking advantage of Egs. (B.59-B.60). We obtain

.o = Z{Qi(ak xap) o+ [[wl* = (ar-ai)](r-o) +i(yiar —ykai) X7 o
k

+ [(ar - o)(r - a}) + (af - o) (r - an)] } (B.67)

Therefore, r’ = Mr + ¢, with

c=2i) (axx aj), (B.68)
k
that is
c; = QiZej-lmaklaZm. (B69)
klm

Similarly, one can see that M is given by Eq. (6.9).
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Exercise 6.2 Let us define S = VMTM. The matrix S is by definition sym-
metric. Therefore, it is diagonalizable and we can write its spectral decomposition
S =3, sili)(i]. As S is a non-negative operator, we have s; > 0. We now de-
fine ;) = Mli). We see that (;|;) = (i|MTMli) = s?. For s; # 0, we
define |a;) = |1i)/si. The vectors |a;) are normalized and orthogonal. We em-
ploy the Gram—Schmidt decomposition to complete the orthonormal basis {|a;)}.
Finally, let us define the operator O = }_,|a)(i|. This operator is orthogo-
nal since 070 = >y i eglaa) (@] = 32, 1i)(i] = I. When s; # 0 we have
OS|iy = s;0)i) = si|las) = J1h;) = Mli); when s; = 0, OS|i) = 0 = |¢h;) = M|i).
Since the actions of the linear operators M and OS on the basis {|i)} coincide,
then M = OS.

Exercise 6.3 Let A, B, C' and B denote the quantum gates of Fig. 6.6, from
left to right. We have

o o Q
n o Qo
o Qo ®n
Qo »no
o o o -
- o o o
o = o o
o o~ o

, (B.70)

o o Q
C‘DOQO
o Qo wn
Qo »n o

where C' = cos g and S = sin g. The action of the circuit in Fig. 6.6 is described
by the unitary operator

1 0 0 0
2_ a2 _
U = BCBA = 0 ¢7—=57 0 208 (B.71)
0 0 1 0
0 208 0 C*-5?
We have p{(;r?t) = Upi(f]Ot)UT, with
() = [p °l. (B.72)
00

The Kraus operator Fy, is defined as Fj, = (k|U|0)., where the subscript e refers
to the environmental qubit. Since (Fy):; = (ki|U|0j), it is easy to see that U is
represented as the block matrix

Fy ..
o

U= , (B.73)
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where

Ry =

Exercise 6.4 Following the same procedure of Sec. 6.1.3, we obtain
= 1a’UpU" +18p.

Therefore, the Kraus operators are given by Eo = || and E1 = |a|U.

1 0 1 0 0 0 0 0
2 2 = ) Fl - = . .
0 C“=5 0 cos@ 0 2C8 0 sin@

609

(B.74)

(B.75)

Exercise 6.5 Let A, B, C, and D denote the quantum gates of Fig. 6.9, from

left to right. We have

C 0-S 0 1 00 0
a—| 0C 0=s | L 0001}
S 0 C o0 00 1 0
L 0 S 0 C | L0 1 0 0
T C 0 S 0] 1 0 0 0]
oo OCOS’DZOIOO’
-5 0 C 0 00 0 1
L 0-S 0 C | L0 o0 1 0|

(B.76)

where C' = cos g and S = sin g. The action of the circuit in Fig. 6.9 is described

by the unitary operator

1 0 0 0
0 208 0 C*-5?
0 C?-8% 0 —2058
0 0 1 0

U = DCBA =

(B.77)

As discussed in the solution of exercise 6.3, the Kraus operators are read from

the first two columns of the matrix U; that is ,

1 2 @2 .
By — 0 _ 1 .0 B = 0 C“=5 _ 0 cosf
0 2CS 0 sin@ 0 0 0 0

(B.78)
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It is instructive to derive the transformation of the Bloch sphere. We have

A R o
P=3 iy 1-2 - PR te
N 1 142z x—y 1 0
| 0sinb | 2| z+iy 1-2 0 sin@
0cosf | 1] 142z z—iy 0 0
0 0 2 | z+iy 1—2 cosf 0
_ 1 1+ cosQIG—l—z: sin® @ (x—sz) sin.é?2 . (B.79)
2 (z+iy)sin®  1—(cos® O+zsin” 0)
Therefore,
z' = xsiné, vy = ysin6, Z = cos® 0 + zsin’ 6. (B.80)

These equations show that the Bloch sphere z? + y? + 22 is deformed into the
ellipsoid
.T/Q + y/2 (Z/ _ C052 0)2

sin? 0 sin? 0

(B.81)

This ellipsoid has z as symmetry axis and centre (0,0, cos? §). A displacement of
the centre of the Bloch sphere necessarily demands a deformation of the sphere,
if we wish p’ to still represent a density matrix. Note that Eq. (B.81) corresponds
to the minimum deformation required to the Bloch sphere in order to displace
its centre along the z-axis by cos® 6. Indeed, the ellipsoid (B.81) and the Bloch
sphere have a higher order tangency (see Fig. B.4).

Exercise 6.6 By direct computation we obtain

-0 .0 .

—ig 0 i3 0 —1i6
Rpr = " L2 T S, =| P, (B.82)

0 e'2 o 1-p 0 e *2 a’e’” 1-p

It is now sufficient to use
ES] ) 2 2
! / e eT207dl = 7T, (B.83)
oV21 J -

with ¢ = V2, to obtain

Y
, p o ae
- , B.84
P [a*ek 1p:| (B.84)

Asp=13(1+2)=1(1+2) and ae™* = (' —iy') = e % (z — iy), Eq. (6.54)
immediately follows.
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Fig. B.4 A visualization of the minimum deformation required to displace the centre
of the Bloch sphere along the z-axis. The horizontal axis may be any axis in the (z,y)
plane.

Exercise 6.7 Let p, denote the density matrix describing the less significant
qubit in Fig. 6.10 after the action of the two-qubit unitary transformation D. We
have

pr = EopE{ + Eip Ert, (B.85)
where the Kraus operators Eg and E; are read directly from the first two columns
of D:

Co O So 0
Ey=|" N S . (B.86)
0 Ch 0 5
Therefore, we obtain from (B.85) that
o 1 1421 xl—iyl
Pr = 2 |zi+iyr 1—21
| Co O 1| 14z z—iy Co 0
o |2 atiy 1-2 0 Ch
n So 0 | 1| 142z z—iy So 0
0 S1|2|zt+iy 1—=z 0 S

1 .

_ 1 ‘ +z (x Zy)(0001+5051) . (B.87)
2 | (z+iy)(CoC1+SoS1) 1-z

Thus,

xTr1 = (006’1 +5'051)x = COS(GO —91).%, Y1 = COS(@Q—Gl)y7 zZ1 = Z. (BSS)
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Finally, p’ is obtained from p, after a rotation of the Bloch sphere through an
angle ¢ about the axis directed along the unit vector n (see Sec. 3.3.1).

Exercise 6.8 In exercise 6.5 we studied a one-parameter map of the Bloch
sphere having the north pole as fixed point. Let us call U;(61) the two-qubit
unitary transformation that realizes such single-qubit map. If R denotes a Bloch
sphere rotation that maps z — —z, then Us(02) = (I ® R) U1(62) (I ® R') induces
a one-parameter map in the Bloch-sphere coordinates such as the south pole is
the fixed point. If we combine Ui (1) and Uz(02) we move both the north and the
south pole. We then consider the transformations Us(83) = (I® P)U1(83)(I® PT)
and Uy (A1) = (I ® P) U2(04) (I®@ PT), where P is the matrix rotating the z-axis of
the Bloch sphere to the z-axis. Similarly, we consider two other transformations,
Us(05) = (I ® Q) Ui(05) (I ® Q") and Us(0s) = (I @ Q) U2(fs) (I @ QF), where
the matrix Q rotates the z-axis to the y-axis. We have thus generated a generic
6-parameter (61,...,0s) map p — pp of the Bloch sphere into an ellipsoid whose
centre is in general located away from the centre of the Bloch sphere but whose
axes are parallel to the axes of the Bloch sphere. If we add two generic three-
parameter rotations Wi(07,60s,09) and Wa(010,011,012), we obtain a generic 12-
parameter affine shift of the Bloch sphere: p — p' = Wa pp Wi.

Exercise 6.9 As the unitary operator V' acts only on the environmental qubit,
it does not modify the system density matrix. Indeed, we have

pl = Tren [(V @ DU0)(0| @ p)UT (VT @ I)]
= Treny [U(J0)(0] @ p)UT (VI @ I)(V @ I)]
= Tren [U(|0)(0] @ p)U']. (B.89)

Exercise 6.10 To solve this exercise, it is useful to remember that any 2 x 2
unitary matrix U can be seen (up to an overall phase factor) as a rotation through
an angle § about some axis of the Bloch sphere (see Sec. 3.3.1). Hence, we have

U =cosil—isini(n- o), (B.90)

where n is the unit vector directed along the rotation axis.

(i) For U = 03, 6 = —m and n = (1,0,0). Thus, o, maps a vector r = (z,y, z)
of the Bloch sphere into r1 = (x1,y1,21) = (z,—y,—2). As discussed in
exercise 6.5, the next four quantum gates map 71 into ro = (x2,y2,22) =
(x1sin 6, y1 sin B, cos® 6 + z1 sin? ). Finally, U maps rs into v’ = (2,9, 7') =
(z2,—y2, —22). The composition of the above three unitary transformations leads
to v’ = (zsin @, ysin 6, — cos®  + zsin? @). The fixed point of the transformation
r — 7’ is the south pole of the Bloch sphere; that is, » = (0,0, —1). Note that, if
the transformations U and UT had not been applied, the fixed point would have
been the north pole of the Bloch sphere, » = (0,0, 1).

(ii) We can see from (B.90) that U = 712(1 =+ i0;) induces a rotation through an
angle F7/2 about the j-axis of the Bloch sphere. Let us consider the three cases
separately.
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a) For U = ﬁ([:ﬁ:iam) we have r1 = (z, £z, Fy), r2 = (21 sin 60, y1 sin 0, cos® 0 +
z15in? 0), v’ = (22, F22,%y2). Therefore, ' = (xsin 6, F cos? @ + ysin® 0, zsin 6).
b) For U = ﬁ([:l:iay) we have r1 = (Fz,y, £2), r2 = (z1sin 6, y1 sin 6, cos® § +
z1sin? 0), 7’ = (£22, Y2, Fx2). Therefore, ' = (£ cos> 6 + xsin? 0, ysin ), zsin 6).

c) For U = %(Iiwz) we have r1 = (+y, Fz, 2), ra = (z1sin6,y; sin b, cos? § +

z15in? 0), 7' = (Fy2, £x2, 22). Therefore, ' = (xsin b, ysin b, cos® 6 + zsin? 6).

Exercise 6.11 Let us first discuss the teleportation protocol (see Fig. B.5).

The state |¢) to be teleported and the imperfect Bell states pgg;lp ) are given by
[v) = al0) + B|1) and

0000
p](Bellp) = % 0C 10 ) (Bgl)
0000
where C' = cos §. The matrix representation of the Bell measurement B is given

by Eq. (4.30). We have

pp = (B&I)pa(B'®1I), (B.92)
where A
pa = [0) (W] phmd (B.93)
and
I 0 0 I
o I I 0
Bl =-L B.94
V2 1 0 0 -I (B.94)
0 I —-I 0
‘We obtain
D .
_1 , B.95
PB 1 P ( )
G
where

Do [ L& a*ﬂCy 5 [ Jo? aﬁ*C]’

afC ol a*BC |8
(B.96)
6> —apC lal*  —ap*C
F = % 2 , G = * 2 )
—af*C o —a*pC ||

and we have denoted by .. the 2x2 matrix blocks whose expressions are not needed
in our subsequent calculations. The outcome of the measurement performed on
the first two qubits (by means of the detectors Dy and D1) determines the state of
the third qubit (D if the outcome is 00, F if the outcome is 01, F' if the outcome
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is 10, and G if the outcome is 11). As discussed in Sec. 4.5, in all cases the unitary
operator U recovers the state py = E. The teleportation fidelity is

F = @lpsle) = lal* +18" +20al*|8]* = 1 -2(1 = C)(la* = |of"). (B.97)

Note that teleportation is perfect only for C' = 1, otherwise F' < 1.

|\|f> ‘ ; D, cbit
l B l
| | D cbit
(imp) ‘ ‘ 1
PBenl l l
1 1 U
Pa Py

Fig. B.5 A schematic drawing of the teleportation protocol with an imperfect Bell state.

Let us now discuss the dense-coding protocol (see Fig. B.6). As we saw in
Sec. 4.4, Alice applies the unitary transformation U € {I,04,0y,0.} to her half
of the (imperfect) Bell state. We have

Ut o

pa = (IaU)pa (TeU") = 0 Ut

. (B.98)

|
o o o o
o Q= o
o~ Q o
o o o o

The final density matrix is then given by pan = BpaBT, where B is defined in
Eq. (4.30). If Alice applies U = I we obtain

0 0 0 O
01+C 0 O
1 + (B.99)
0 0 0 O
0 0 01-C
If instead U = o, then
1+C 0 0 O
0 0 0 O
: (B.100)
0 01-C O

0 0 0 O
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If U = oy, then
1-C 0 0 O
: 0 0 00 (B.101)
0 01+C O
0 0 0 O
Finally, if Alice applies U = 0., we obtain
0 0 0 O
1—
: 01-¢ 0 0 (B.102)
0 0 0 O

0 0 0 14C

In all cases, Bob correctly recovers the two classical bits transmitted by Alice
with probability p = %(1 + C). Only when C = 1 the error probability is zero;
that is, p = 1.

Dy

D,

Fig. B.6 A schematic drawing of the dense-coding protocol with an imperfect Bell state.

Exercise 6.12 It is convenient to write the master equation (6.100) in the
{]0), |1)} basis. In this basis we have

—=[ve] == ]0s] (5103

If we write the density matrix p as

p = [”00 por } (B.104)
p1o P11

we obtain

; 0
~L1H,p] = —iwo por 1 (B.105)
h —pwo O
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2p11 —po1

orpo_ — %U,Uerf %pU,UJr = % [ ] , (B.106)
—pio —2p11
1 1 1 —2900 —po1

O-_poy — 5040-p— 5p04+0— = 3 . (B.107)
—p1o 2poo

After insertion of (B.105-B.106) into (6.100) we obtain the following equations:

poo = v (14 1) p11 — v 7 poo,
p11 = —y (7 +1) p11 4+ ¥ 7 poo,
por = —[37 (2 + 1) — iwo] po1,
plo = — [%’Y 2n+1)+ iwo] p10-

(B.108)

Their solution is

poo(t) = Bi — Baexp[—v(2n + 1)t],
n
p11(t) = ———= B1 + Baexp[—y (2n + 1) 1],
n+1 (B.109)
poi(t) = Bsexp{— [37 (20 + 1) —iwo] t},
pro(t) = Baexp{— [27 (20 + 1) + iwo] t}.

From the initial conditions and from the relation Tr p(0) = poo(0) + p11(0) = 1
we obtain

n+1 n
B = : By = p11(0) — s,
T ot 2=l = (B.110)
Bs = po1(0), By = p10(0).

It is clear from Eq. (B.109) that the asymptotic density matrix is given by

ntl 0
ps = lim p(t) = [ A :| . (B.111)
We note that the diagonal terms approach equilibrium on a time scale 74 =
[v(272 4 1)]7"! while the off-diagonal terms require a time scale 7,4 = 274. The
stationary density matrix ps corresponds to the Bloch vector rs = (0,0, 2nJrl)

Exercise 6.13 We expand the commutators in Eq. (6.102) obtaining

N21

p=—= [H o+ = Z A”{2azpa fpa 0i — O] azp} (B.112)

i,7=1
After substitution of Eq. (6.105), namely of the expression
N2-1

Ay = Y SkiAwkSks, (B.113)

k=1
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into (B.112), we have

N2-1

[H, p] + Z S,;Akksk] {O’ipO';[ - %pa;ai - %O’}O’Z’p} . (B.114)

i,,k=1

L

F= 7%
Finally, we define
Ly = \| A > _ S, (B.115)
which implies that

L] =\ Aw > Skjo]. (B.116)
J

Substitution of (B.115) and (B.116) into (B.114) finally leads to the GKSL master
equation (6.99).

Exercise 6.14 Equation (6.117) can be written as
0 —wo A x

wo 0 —A
z -A" A 0

(B.117)

SIS

This matrix is antisymmetric and therefore corresponds to a rotation. Indeed, we
can write

r=Qxr, (B.118)
with
Q= (A, A wo). (B.119)

Therefore, we immediately obtain the rotation axis (6.118) and the rotation fre-

quency = /A2 + A2 + Wi

Exercise 6.15 The wave function (6.134) is a solution of the Schrédinger equa-
tion for a one-dimensional free particle since

0 R? 92
Zﬁaw(%t) =~ 92 (z,t)

G G S
2m 52(1+iht> Zh

mé2

1

- w} . (B.120)

The average value of a generic observable is given by the formula in the footnote
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on page 367. In particular, we have

(z(t)) = /ﬂo da x| (x, )], (B.121)
If we define o’ = & — zo — £, we obtain
“+oo
(z(t)) = /700 da’ (x' +zo+ %t) fz), (B.122)

where

oV 2w

flz) = . exp<f—2), (B.123)

with o = W 1+ m254 Using

+o0 Foo
/ de f(z) = 1, / dexf(z) =0, (B.124)
we have
(z(t)) = 2o + %t. (B.125)
Similarly, we obtain
+oo
w) = [ aew o (<ing )@ =m B120)

The variances (Az)? = ((z — (x))?) and (Ap)? = ((p— (p))?) are computed in the
same manner: the result of Eq. (6.137) is obtained using (B.124) and

/+°° dra’f(z) = o°. (B.127)

Exercise 6.16 The canonical commutation relation is modified by (6.193):
[z,p] — [ng>2,n0p] = ing . (B.128)

Therefore, in quantum mechanics there is an additional parameter that is absent
in classical mechanics, the effective Planck constant fieg = —O The classical limit
is obtained when fieg — 0 (ng — 00), keeping €y and wo constant.

Exercise 6.17 The conditional probability of finding a level in the interval
e+ s,e+ s+ ds] given a level at e is (S> ds, where (s) is the average spacing. We
also note that the probability that there are no levels in the interval [e, e + s] is

[ ds'P(s"). Therefore,
= (/oo ds/P(s/)) %d& (B.129)
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After differentiating Eq. (B.129), we obtain 22 = —-L. P and therefore

(s)

P(s) = P(0) exp<—%) . (B.130)

Note that P(0) = <Tl> in order to assure that [ dsP(s) = 1. Thus, (B.130)

coincides with the Poisson distribution (6.204), provided the spacing s is measured
in units of the mean level spacing (s).

Exercise 6.18 The matrix

Hy H
H=| "7 (B.131)
Hi2 Hao

has eigenvalues

_ Hyi+ Hao £ /(Hu — H)? + 4HZ,

By 5 (B.132)

Thus, the spacing s = E+ — F_ between these eigenvalues is
s = \/(H — H)? + 4H3,. (B.133)
If we introduce the (random) variables * = Hi1 — H22 and y = 2Hi2, then

s = /x% 4+ y? represents the distance from the origin of a point in the (x,y)
plane. Thus, for small ds, the probability of finding the eigenvalue spacing in the
interval [s, s+ ds] is proportional to the area of the region in the (x,y) plane from
s to s + ds; that is, P(s)ds = Csds, where C is a constant. If F(s) denote the
probability of finding no spacings from 0 to s, then

F(s+ds) = F(s)— P(s)ds = F(s)(1— Csds). (B.134)
After expanding F'(s 4 ds) in a Taylor series for small ds, we obtain

F(s) = exp(—% C’sg) ,

s , (B.135)
P(s) = f%i) = Csexp(—3Cs”).

It is then sufficient to express the constant C' in terms of the average spacing

(s) = /000 dssP(s) = \/% (B.136)

and to measure s in units of (s) to obtain the Wigner surmise (6.212).
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Exercise 6.19 For an all-to-all interaction we have O(n?) states directly cou-
pled inside the central band, so that the chaos border J. ~ A. ~ ¢/ n?. Therefore,
the scaling of J. with n is polynomial.

Exercise 6.20 Let us write
p=3sU+r-0), c=1I+s o). (B.137)

We obtain

D(p,0) = +Tr|(r —s)-o| = 1|r — s, (B.138)

where we have used the fact that (r — s) - o has eigenvalues Ay = %|r — s|, so
that Tr|(r — s) - | = [A 4|+ |A=| =2|r — s].

Chapter 7

Exercise 7.1 The quantum circuit extracting the error syndrome without aux-
iliary qubits is shown in Fig. B.7. It can be readily checked that the output ¢ = 0,
1 = 0 corresponds to no error, zg = 1, 1 = 1 to error on the first qubit, zo = 1,
z1 = 0 to error on the second qubit and zo = 0, x1 = 1 to error on the third
qubit. In the case zo = x1 = 1 the logical state «|0) + 5|1) is recovered after a bit
flip of the first qubit, in all the other cases the state of the first qubit is correct
and no further action is required. At the end the three qubits are left in the state

(@l0) + BI1)|zo)|x1).

Dy — X,

D [— X,

Fig. B.7 A quantum circuit extracting the error syndrome in the case of the three-qubit
bit-flip errors, without using any ancillary qubits.

Exercise 7.2 If a single qubit, prepared in the state [¢)) = «|0) + §|1), is sent
through a bit-flip noisy channel, the final state of the qubit is described by

p = (1=)(al0)+BI1)) (a* (0] + B (1]) + €(alL) + BJ0)) (a* (1] + 5" (0]), (B.139)
where € is the bit-flip probability. Hence,

1+2 22—y

(1=e)lal* + elf]* (1—e)af* +ea*B
)= |otf _ 1 A , (B.140)

(1—e)a* B+ eaf* (1-¢)|B> +eaf> | 2
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where ' =z, ¥’ = (1 — 2¢)y, 2’ = (1 — 2¢)z while (z,y,2) and (2,7, 2’) are the
Bloch-sphere coordinates corresponding to the initial density matrix po = |1) (3|
and to p, respectively. Therefore, Eq. (6.29) for a bit-flip channel is recovered.
The fidelity of the transmitted state is given by Eq. (5.60), namely,

F = ($lply) = Tr(pop) = Tr <_[1+Z w—w] {Hz x—zyD

iy 1—z 'y 1—z
= 1+ + (1 -2 +27)] = 1—e(y’ +2°). (B.141)

Note that unit fidelity is recovered when ¢ = 0 or when the initial state is an
eigenstate of o, (r = £1, y = z = 0). For a generic initial state F' =1 — O(e).

When the three qubit bit-flip code is applied the initial logical qubit is encoded
into three physical qubits, which are sent through the bit-flip channel. After error
correction and decoding the initial state is recovered, unless two or more qubits
were flipped. Therefore, following Eq. (7.8) and the subsequent discussion, we
can see that the final state of the logical qubit is given by

p=[1=0°+3c(1 -] (al0) + BI1)) (" (0] + B(1])
+ [3(1 — €) + €] (al1) + 810)) (a* (1| + B*(0]).  (B.142)
Therefore, the fidelity of the transmitted state can be computed as in Eq. (B.141),
after the substitution € — e. = 3¢ — 2¢3. We have FF = 1 — ec(y2 + 22) =
— (362 — 26®)(y* + 2°). For a generic state, F = 1 — O(¢?). This has to be
compared with F' = 1 — O(e), obtained by sending a single qubit without error

correction. Therefore, the error correction procedure greatly improves the fidelity
of the transmitted quantum information for € < 1.

Exercise 7.3 Let us consider the state |0r) and an error affecting the first
qubit (the state |1r) and errors affecting other qubits are treated in the same
manner). We have

Ul0L)[0)
L (10)]eo)  + 11)lex) ) 100) () ()
+ L (10)]e2) 5+ [Dles) ) [11) (- ) ()

5 (1000)|eo) ; +[100)[e1) 5 + [011)]e2) ; + [111)]es) ) (.- ) (--.),
(B.143)

where the state of the last six qubits has been simply denoted as (...)(...) since
they remain de-entangled from the environment. The density matrix describing
the first three qubits plus the environment reads
= 5(/000)|e0) ;; + [100)[e1) p + [011)]e2) ; + [111) es) ;)
x ({000 (eo| + {100] s{er | + (011] p(ea] + (111|es]).  (B.144)
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After tracing over the three qubits, we obtain the density matrix of the environ-
ment:

Pe = %(|60>EE<60| +ler) gpler] + le2) g plea| + |e3>EE<e3|)' (B.145)

Exercise 7.4 The correctable errors are
E, = 0,;1) ®I(2) ®I(3) — EL

B =1YgcPeI1® = B, (B.146)
B =1Ye1® s = El

Since 02 = I, we have El E1 = E}E> = E}E3 = I. Thus, we obtain
(iL|EIEaljr) = bij, (B.147)

where a = 1,2,3,4=0,1 (|0z) = |000), |1z) = |111)). Finally, it is easy to check
that, for a # b, (ir|ElEy|ir) = 0. For instance, for a = 1, b = 2 we have

(0L|E] E2|0L) = (000|0(” @ 0(® @ 1®]000) = (000[110) = 0.  (B.148)

Similarly, we obtain (1|E]E2[1z) = 0. Thus, condition 7.29 is fulfilled with
Cab = bap-

Exercise 7.5 The non-degeneracy of the three-qubit code was verified in the
previous exercise (we have seen that Cup = dqp). To show the degeneracy of
the nine-qubit Shor code it is sufficient to find a case in which Cup # dap. Let
FE4 and FE2 denote the phase errors affecting the first and on the second qubit,
respectively. We obtain

0,) = E1]ox)
1L) = Bi1y)

5 (1000) —[111))(|000) + [111))(|000) + [111)),
(B.149)
—<(/000) + [111))(]000) — [111))(]000) — [111)).

Similarly, we obtain

|07) = E»|0r)
[17) = E|lr)

(1000) — [111))(]000) + [111))(J000) + [111)),

(B.150)
(1000 + [111))(J000) — [111))(|000) — |111)).

s s

Since [07) = [07) and [17) = [17,), we have (ir|E] Es|ir) = 1, with i = 0, 1. Thus,
Ci2 =1 # d12.

Exercise 7.6 As an example, we consider the second line of Table 7.1. The
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effect of the error 0¥ ¢{¥ on the encoded states (7.35) leads to

aPe®0L) = 2 (J00100) 4 ]01011) — [10111) — [11000)
—100010) + [01101) — |10001) + |11110)),

(—[11011) — |10100) — [01000) — [00111)
+ [11101) — [10010) — [01110) + [00001)).

1
V8
(B.151)

0;3)0§3)|1L> = ﬁ

It can be checked by direct computation that the quantum circuit in Fig. 7.8
maps the error-affected state U,(f)agg)(odOL) + B|11)) into —|11101) + 5]11001).
Therefore, the detectors Do, Dy, D., and Dy in Fig. 7.8 give outcome a = 1,
b=1,¢=0, and d =1 and the third qubit is in the state [¢') = —a|0) 4+ B]1), in
agreement with Table 7.1.

Exercise 7.7 We have

1
G= {1}, (B.152)
1
so that the codewords are
1 0 1 1
yo=Gro = |1|[0] =|0|, y1 =Gx1 = |[1|[1] =|1]|. (B.153)
1 0 1 1

The lines of the parity-check matrix H must be linearly independent and orthog-
onal to the columns of G. These conditions are fulfilled by taking

H:{Oll]. (B.154)

1 0 0
ey = 0 i €2 = 1 i es3 = 0 . (B155)
0 0 1
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The corresponding error syndromes are given by

- 21 o
11 0
H€1 = 0 = 5
11 01| 0] | 1]
_ S To] -
Heo = |0 Y10 = Y], (B.156)
101
L J _0_ L
- S0 .-
11 1
Hes =110 1]|% = |1
L J _1_ L4
Exercise 7.8 For instance, we can consider the two-qubit error
1
1
0
€12 = 0 (B157)
0
0
_O_
The error syndrome is
r1T
1
0001111 0 0
H(Ci)eiz= 10110011 0f =11 (B.158)
1010101 0 1
0
_0_

As shown in Eq. (7.48), such an error syndrome would be erroneously interpreted
as a single error affecting the third qubit.

Exercise 7.9  Given the parity-check matrix (7.47), the quantum circuit map-
ping the state (7.56) into (7.57) is readily obtained and shown in Fig. B.8. The
error syndrome is then obtained after measurement of the three ancillary qubits.

Exercise 7.10 First of all we note that, for any w € C' and z € C+, w-z = 0.
In order to prove this relation, we write w = Ga and z = HTt, with = and t
column vectors of dimension k and n — k, respectively. Hence, we have w - z =
wTz =2TGTHTt = 0 because GTHT = 0. This implies that, for any w € C' and
2€CH, Y ()P =2 0 1=2"
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10> Do

10 Dy
10 D]

Fig. B.8 A quantum circuit extracting the error syndrome (for amplitude errors) in the
CSS code, for the case in which Cj is the [7,4,1] Hamming code and C2 = Cf. The
three auxiliary qubits are initially prepared in the state |0).

To solve the second part of this exercise (z ¢ C), we use the identity
> (=) =0, (B.159)

where a and b are k-bit strings, with b # 0; that is, b is different from the string
with all bits equal to 0. We then have

Z(_)w-z _ Z(_)(Gx)-z _ Z(_)(G%)Tz

wel wel wel
= > = 3 (B60)
wel wel

Since GT is the parity-check matrix for C* and we assume that z does not reside
in C*, then G"z # 0. Finally, using (B.159), we obtain 3, _,(—)"* = 0 for
z¢ Ct.

Exercise 7.11 It is sufficient to remember that an amplitude error in the
computational basis {|0),|1)} becomes a phase error in the basis {|0)z,|1)s}.
Indeed, the mapping

0, — [0)q, 1), — €e®[1), (B.161)
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may be expressed in the computational basis as

1+ e 1— e 1—e™ 14 e
1 1
Sj0) ), ) - )+

0y — ).  (B.162)

For ¢ = m, these latter relations reduce to the bit-flip error (|0) < |1)). We can
code a single logical qubit by means of two physical qubits as follows:

02) = 1011, = £(100) = [o1) + |10) — [11)) 5163
[1L) = 1)2]0), = 3(|00) +[01) —[10) — [11)).
If the same amplitude error (B.161) acts on both qubits, we have
00) = €9l0s),  11) — €*[1L), (B.164)

so that a generic state |¢r) = «|0r) + B]11) just acquires an overall phase factor
of no physical significance. The generalization to n qubits is analogous to the
discussion in Sec. 7.8.

Exercise 7.12 In the basis of the eigenstates of o, the Hamiltonian reads as
follows:

Q
H=1n [g w] : (B.165)

The corresponding Schréodinger equation can be solved as discussed in exer-
cise 3.22. Alternatively, we can write the density matrix as p(t) = (I +7r(t) - o)
and obtain from the von Neumann equation (5.15) the following equations for
components (z,y, z) of the Bloch vector r:

T = —wy,
Y = wz —Qz, (B.166)
z = Qy.

The solution to this linear system reads

z(t) 1 1 1
y(t) | = A| 0| +B | R | VTR o | O | et
z(t) & ;) _o

(B.167)
with the constants A, B and C determined by the initial condition. Starting from
the state |0) (z(0) = y(0) =0, 2(0) = 1) we obtain A = % and B=C = —2,
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so that
wf

z(t) = ez [1—(:05( w2—|—§22t)],

Q .
y(t) = —ﬁ Sll’l( w? 4+ QQt) , (B.168)
w

2 Q2
z(t) = eGP +3 o cos(

The survival probability is given by

w? 4+ QQt) .

p(t) = Tr(p(1)[0)(0]) = L[1+=2(t)] = 1-% sin’ <\/w2 + 02 %) (B.169)

The short-time expansion of this equation leads to p(t) = 1 — 572, with the Zeno
zZ

time
2 h
tZ = — =

@ VO, J0)
A graphical visualization of the Zeno effect is shown in Fig. B.9: the survival prob-
ability is enhanced by frequent measurements of o, performed at time intervals
T K tz. In such a case, the survival probability is bounded below (interpolated
at t = N7) by the curve

(B.170)

p(t) = exp <—t%t) . (B.171)

zZ

05 L 1 L 1 L 1 L 1
0 0.2 0.4 0.6 0.8

t,

Fig. B.9 Evolution of the survival probability with (above) and without (below) mea-
surements, with w = Q and 7 = %tz. The thin solid line shows the exponential de-
cay (B.171).
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Exercise 7.13 The eigenvalues E; and the corresponding eigenvectors |¢;) of
Hamiltonian (7.94) read

Eo =0, Ei=/Q2+Q% FE» = —/02+Q32 (B.172)

— 82 S 1 — %

NGrEE) \/Q(QI%JrQ%) \/Q(forﬂg)
lpo) = 0 o pr) = ) o p2) = e
R 7 W 2 2

/2403 V/2(92+932) V/2(92+032)

(B.173)
The wave function [¢(0)) = |0) may be expanded over the (orthonormal) basis

{leo)s @12, 2)}:

2

[0) = > ciles)s e = (@il(0)) = (p;]0). (B.174)

=0
We then obtain

w0) = 3 cremn( 1Bt los) (B.175)

Therefore, the survival probability at time t reads

2 .
(2
> exp( =35t 0o
Jj=0

2

p(t) = |(0[p(1)]* = , (B.176)

directly leading to Eq. (7.95).

Exercise 7.14 The quantum circuit for computing the bit-flip syndrome for the
seven-qubit CSS code is shown in Fig. B.8. The phase-flip errors are diagnosed
by the same circuit in the rotated basis (obtained through application of the
Hadamard gate to each qubit). The circuit in Fig. B.8 is not fault-tolerant owing
to the backward sign propagation problem. To make it fault-tolerant, we must
replace each ancillary qubit by four qubits, similarly to what was done in Fig. 7.10.
Furthermore, we should avoid the measurement of the ancillary qubits destroying
the encoded quantum information. That is to say, we must extract the error
syndrome without knowing anything about the encoded state. A method to meet
this requirement has been suggested by Shor: we prepare each group of four
ancillary qubits in an equally weighted superposition of the strings with an even
number of 0’s and 1’s:

W) snor = g (0000) +|0011) +[0101) + |0110)
+ [1001) + |1010) +[1100) + [1111)). (B.177)

It can be checked that, if no error has corrupted the data qubits, then the circuit in
Fig. B.8 will leave the state |¥)g, ., unchanged. On the other hand, if a correctable
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single-qubit error has occurred, then the state |U)g, =~ will be transformed into
an equally weighted superposition of the states with an odd number of 0’s and
1’s. Thus, the parity of the four ancillary qubits tells us whether or not there
is a single-qubit error but does not reveal any information on the encoded state
al0r) + BI1L).

Exercise 7.15 Let us first consider the case in which the initial state of Bob’s
qubit is pure, |[¢)) = u|0) + v|1), where p and v are complex numbers, with
|#> +|v|* = 1. The unitary transformation W in Fig. 7.13 maps the state |¢)|®)
(where |®) is given by Eq. (7.115)) onto the state

|¥) = p(a]000) + 3101) 4 v|110) + 6|011))
+ v(al111) + 8]010) +~[001) 4 6]100)). (B.178)

We then obtain the density matrix py after tracing the density matrix |¥)(¥|
over Eve’s qubit and the ancillary qubit. We have

| (? + 6%) 2ur* ad
+IP(B ) +2u By
py = . (B.179)
2u*vas u?(8% + )

2By VP (e® +6%)

In the same manner we obtain the density matrix p, after tracing over Bob’s
qubit and the ancillary qubit:

lul*(® + 52) 2uv*af
+ WP +6%) 42t vyd (B.150)
Pp = . B.180
2u*vaf3 lul*(v* +6%)

+2uy8 + v (e® + 57)

Let us call (z,y, 2), (zB,yB, 28) and (¢g,yE, 2E) the Bloch-sphere coordinates
corresponding to [¢) (1|, pp and pg. We have

pt = Sa—iy), |u?=Li1+2), P =3i0-2). (B.181)
After setting v = 0, we obtain
s(xp —iys) = (pg)or = (z —iy)ad, (B182)

3(1+28) = (pploo = 3(1+2)(a® +6%) + 1 (1 — 2)5,

which imply
rp = 2adx,
yB = 200y, (B.183)
zp = (o + 6% — %)z
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The state pg is an isotropic cloning of |¢)()| when Rp = xp/x = yp/y =
zB/z. Therefore, we obtain

208 = o + 6% — 32,
so that
§ = sat4/32— 22 (B.185)

In the same manner we obtain

rp = 2a0,
yE = 2a0y, (B.186)
zp = (&®+ 3% — 6%)z.

Isotropic cloning (Rg = zr/x = ye/y = zr/%) is obtained when

208 = a? + 32 — 82,

so that

B =1taty/1- 3202 (B.188)

Note that, if we choose the plus sign in (B.185), then the minus sign has to be
taken in (B.188) in order that the normalization condition o 4 3% +4§? be satisfied.
This choice corresponds to Eq. (7.116).

Note that the cloning is also isotropic in the case in which the initial state p of
Bob’s qubits is mixed. In this case we may write p = >, pipi, with p; = |abi) (i]
a pure state. The Bloch vector r associated with p is the weighted sum of the
Bloch vectors r; associated with the density matrices p;: r = Y, piri. Since
we have seen that for pure initial states (r;)p = Rp7; and (r;)g = Rg7:, then
rg=y,pi(ri)p=Rpr and re =3, pi(ri)r = Rer.

Chapter 8

Exercise 8.1 We substitute [¢) = exp( — #wtS:)[¢), into the Schrédinger
equation ih% |y = H|¢), thus obtaining

L d i i
ih— [exp(* ﬁthz)|’(/}>T:| =H {exp(* gthz)h/J)r] . (B.189)
A straightforward calculation then gives

ih%h/))r = {exp(%wtsz)(waz +H) exp(f %thz)} [¥), = Hr|t),,
(B.190)
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where the Hamiltonian H, reads
H, = (wo — w)S: + w1 [ cos(¢)Sx + sin(¢)Sy]. (B.191)

Note that the Hamiltonian H, is time-independent; that is, the rotating field
lies along a fixed axis in the rotating frame. Moreover, at resonance (w = wo)
the first term in (B.191) disappears, so that, in the rotating frame, the spin
simply precesses with frequency w; about the axis directed along the unit vector
(cos ¢,sin ¢, 0).

If the oscillating field is off-resonance by an amount Aw = wg —w, then in the
rotating frame the spin precesses with frequency wi = y/(Aw)? + w? about the
axis w_li(wl cos ¢, w1 sin ¢, Aw). Note that, if |Aw| > wi; that is, we are far from
resonance, then the oscillating field is unable to flip the state of a spin (]0) < |1)).
Indeed, in this case the rotation axis in practice coincides with the z-axis.

Exercise 8.2 We obtain

Ry, () Uz(%)Rxl(w) = —oM [cos(g—;)l — isin(;—;)ail) ®a£2)} oM
= —cos(g—;)l—I—zsm(g—;)ag)(gil) ®a§2))0;1)
= eos( N s (PN, o @ i
= cos(Qh)I zsm(Qh)az Qo) = UI(%)7 |
B.192
where we have used 0,0,0, = —0.. Therefore,
Ur (L) Roy () Ur (3) Ray (7)) = Ur (L) U (%) = I. (B.193)

Exercise 8.3 The phase accumulated due to the Hamiltonian evolution of the
spin up to time ¢ can be eliminated if two 7 pulse are applied at times 0 and ¢
and then the evolution continues for another time ¢. Indeed, we have

exp(f%Ht) exp(figaz) exp <7%Ht) exp(figam)

= —exp<—%wot0z) Ou exp<—%wot0z) o = 1. (B.194)

Exercise 8.4 By means of refocusing techniques the contributions to the tem-
poral evolution due to one- and two-qubit terms in the Hamiltonian (8.21) can
be switched on and off at will. We can then implement the CMINUS gate as

CMINUS = Vi exp(igail) ® 022)) exp(—igagl)) exp(—i%af)) . (B.195)
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Indeed, we have

[1+i 0 0 0 ]
(1) @)\ _ 0 1-2 0 O

exp(zzaz ® o, ) = ﬁ 0 0 1-i 0 (B.196)

L0 0 0 144]

[1-¢ 0 0 0 ]
@ _ 1 01— 0 O

@I =710 0 14 o |0 B

0 0 0 1+i]
1-i 0 0 0 ]
_ 41| 014i0 0
=7l o 0120 | (B.198)
| 0 0 0 1+

o) 1 1-¢ O
exp —ZzUZ = W 0 1+Z

exp(fi%ag)) =Yg ﬁ

The decomposition (B.195) may be verified by direct multiplication of the ma-
trices (B.196-B.198). The CNOT gate can then be obtained from CMINUS and
Hadamard gates as shown in Fig. 3.6. Note that the waiting time for the im-
plementation of the unitary transformation exp (i%agl) ® 09)) is proportional to
ﬁ. Therefore, if Ji2 ~ 1kHz, the realization of a CNOT gates requires a time

of the order of milliseconds.

Exercise 8.5 It is convenient to project the solution ¢ (r,t) = (r|¥(t)) of the
Schrodinger equation (8.25) onto the basis of eigenfunctions of Hy. We obtain

b(rt) = 3 cilt)pu(r) exp(—i%t) , (B.199)

i

where ¢;(r) is the eigenfunction of Hy corresponding to the eigenvalue E; (i.e.,
Ho¢i(r) = Ei¢i(r)). We are interested in the case in which only two states of the
atom (¢4 (r) and ¢(r)) are relevant for its dynamical evolution, the corresponding
energies being Ey = hwy and Ee = hwe. After substitution of (B.199) into (8.25)
we obtain

i=g,e

= Z (Ho +H[) Ck(t) d’k(’l‘) e WKt Z (hwk +H[)Ck(t) d)k(T) et

k=g.e k=g,e

(B.200)
We now write

E(t) = Eocos(wt+ ) = L (ei(wt+¢)+e—i(wt+¢>)) = ae™t 4 ate ™t

(B.201)

1
2
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where a = 1 Eg e’®. Thus, Eq. (B.200) reads

ih Z oi(r e Wit éi(t) = Z cx(t) e ikt [fez( tat eﬂm)] or(r),

i=g,e k=g,e
(B.202)
corresponding to two first-order ordinary differential equations in the variables
co and c¢1. After multiplication on the left of both members of (B.202) by ¢7(r)
and integration over r we obtain, for j = g, e,

ihe”™ite;(t) = Z cr(t) e nt /dr ¢;(r) [fez (a fta* eﬂ“’t)] or(r),
k=g,e
(B.203)
where we have taken advantage of the standard orthonormality relation
J dr ¢5(r)¢i(r) = d;;. We must evaluate the four integrals

Dy, = fe/dr @5 (r) z gu(r), (j, k = g,e). (B.204)

Since V (r) is spherically symmetric, the eigenfunctions ¢;(r) are symmetric or an-
tisymmetric under the inversion r — —r. Thus, Dgg = Dee = 0 and Eq. (B.203)
reads

ihég(t) = ce(t) [Dae’(“’ wadt L Da*e —1(w+wa)t] ’
: (B.205)
ihée(t) = Cg(t) [D*aez(uﬂrwd + D*a* 71(4,) wa)t] ’

where we have defined D = Dge = Dgg and wg = we — wy. The terms depending
on w + w, oscillate very rapidly and can therefore be neglected (rotating wave
approximation). Setting

A = w—w,g, Q= — (B.206)

we obtain

e (t) = Qemtce,
{ o) (B.207)

ice(t) = Qe e,

To solve this system, it is convenient to differentiate the first equation and sub-
stitute the result into the second. We have

. iAt it
icg = iAQe " ee + Qe e

zAt Q*efiAt

= iAicg + Qe Cg, (B.208)

that is,
¢y — iAéy +Q%cy = 0. (B.209)
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This last equation is easily solved by setting co = Ae®?, which leads to the
algebraic equation
£ —Ae— QP =0, (B.210)

2
€ = %ﬁ: ,/AT +lQp. (B.211)

Therefore, the general solution of (B.205) is

whose solutions are

cq(t) = A+ei5+t + A_eigJ7

, , (B.212)
ce(t) = ,% (§+A+ez(§+—mt LA e —A)t) _
The constants A4 and A_ are determined from the initial conditions cgo) =cq(t =
0) and c{” = c.(t = 0). We obtain
(0) (0) (0) (0)
A, = & cg’ + Qce ’ A — Ercg +Qce ] (B.213)
- — &+ §+ —&-
We finally substitute these relations into (B.212) and obtain
[ .(0) (0)
cq(1) Cg Ugg Uge Cg
=U = . B.214
[ce (t) Q) Ueg Uee | | (5219
Here U is a unitary matrix with matrix elements
AT iA si .
Ugg = ezgt cos(at) _ %] = UL,
o (B.215)
U — g5t —iQ2sin(at) _
ge a €g»

where

A2
a=1\7 + 192, A= w—w,. (B.216)

We are particularly interested in the resonant case in which the detuning param-
eter A = 0. It is easy to see that in this case the unitary matrix U reduces to
(8.24), with |Qt = £.

Exercise 8.6 From the properties of the Hermite polynomials, given in the
formulee in the footnote on page 534, we derive that

da

H,1(8) = <2§* i

) Ho(€). (B.217)

We have
d

=) = mlew) (B.218)
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where { = /7% z. It follows immediately that

a'pn(€) = Vn+ 1dn41(8), apn(§) = Vnen-1(£). (B.219)

The iterative application of the first of these relations leads to

#0()- (B.220)

Exercise 8.7 We can expand the solution to the Schrédinger equation for the
Jaynes—Cummings model as

— ,Z > cim(®)]in), (B.221)

where the indices ¢ and n label the atomic state and the number of photons.
Therefore, the Schrodinger equation reads

ih > dn®lin) = > ZHCZ w1, (B.222)
i=g,e n=0 i!=g,en’=0
which implies
the; n(t)]i,n) = Z Z i,n|H|i',n' Y (L) (B.223)
i!=g,en’=0

The matrix elements of the Jaynes—Cummings Hamiltonian can be easily com-
puted and we obtain

a 1
<g7n|H|gan/> =h [7% +w (n+ 5):| 671,71,’7

<ga TL|H|€, n/> = A*\/ﬁén,nUkla

(B.224)
<€, n|H|g7 nl> = A vVn + 1 6n,n’—17
(e,n|Hle,n') = h [— +w (n + %)] Snnt -
After substitution of these matrix elements into (B.223) we obtain
. Waq 1 .
thégn = h [—7 +w (n + 5)] Con(t) + XNV cen—1(t),
(B.225)

ihicen

a 1
R [% +w (n + 5)] Cen(t) + AVn + Legnt(t).
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It is convenient to write the second equation for n — n —1. Then system (B.225)
reads

. a 1 A"
1Cgn = |:7% +w <n+ §>:| Cg,n(t) + fﬂce,nfl(t),

{% tw <n - %)] Com_1(t) + %\/ﬁcg,n(t), (B.226)

ic‘e,nfl

It is now clear that the level |g,n) is only coupled to |e,n — 1). In order to solve
these equations, we first separate the time dependence due to Ho, setting

Com(t) = exp{fi {f% +w <n+ %)] t} Zgm (D),

: (B.227)
Cen—1(t) = exp{fi {% +w <n — 5)] t} Cen—1(t).
We insert these relations into (B.226) and, after defining
A*
A = w—wg, Qn = E\/ﬁ, (B.228)
we obtain )

iCgm = QU exp(iAt) Gen1(t),
i, DAY e (1) -

iCen—1 = Sh exp(—iAt) g n(t).

These equations are analogous to (B.207), obtained for a two-level atom inter-
acting with a classical field and can be solved in the same manner. Thus, in
the resonant case A = 0 there are Rabi oscillations between the states |g, n) and
le,n—1). The frequency |Qy| (2n = |Qn]e’™) of these oscillations is proportional
to the atom-field interaction strength |A| and to the square root of the number
n of photons in the resonant cavity.

Exercise 8.8 It is clear from exercise 8.7 that the overall state of the atom—field
system at time ¢ is given by

[h(t)) = cgn(t)]g,n) + cen—1(t)]e,n — 1). (B.230)

The coefficients cg,n(t) and ce,n—1(t) are determined by the initial conditions
cg% =cgn(t =0), ci?,)l_l = Ce,n—1(t = 0). At resonance (w = waq) we have

con(t) | _ cos(|Qult)  —ie"n sin(|Qlt) | [ cSh (B.231)
Cem_1(t)| | —ie7n sin(|Qnlt)  cos(|Qm|t) Tl

Since |¢o) = |g,n), then

[(t)) = cos(|Qt)]g, n) —ie” "™ sin(|Qn|t) e, n — 1). (B.232)
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The overall atom—field system at time ¢ is in a pure state, p(t) = [ (¢))(1(t)].
Thus, the entanglement between the atom and the field is quantified by the
reduced von Neumann entropy

Sa(t) = — Tr[pa(t) log pa(t)], (B.233)

where
pa(t) = Try [p(t)] = cos®(1l0)lg) (gl +sin® (I [ [e)e]  (B.234)

is the reduced density matrix describing the state of the two-level atom
(the trace is taken over the field degree of freedom). Therefore, S.(t) =
=372 Xi(t) log Ai(t), where A\i(t) = cos®(|Qn|t) and Az = sin®(|Qu|t). are the
eigenvalues of p,. The temporal evolution of pe(t) is shown in Fig. B.10: it oscil-
lates between S, = 0 (for separable states) and S, = 1 (for maximally entangled
Bell states).

0.8 - R
0.6 - R
©
w
0.4 - R
0.2 i
0 | | | |
0 0.2 0.4 0.6 0.8 1
Q t/(2n)

Fig. B.10 The evolution of the entropy S, for a two-level atom coupled to a single mode
of the electromagnetic field at resonance (w = wq).

Exercise 8.9 (i) We have

(nlala) = a(nla) = vVn+1(n+ 1|a). (B.235)
This relation can be iterated, thus obtaining
an
(nla) = 2= (0lay, (B.236)

vl
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which implies

(B.237)

i Ynla) = 0|a

Normalization of this state ({a|a) = 1) leads to |<0|o¢>|2 = ef‘o‘ﬁ, so that state
(8.36) is obtained.
(ii) We have

_ 2 _ o
p(n) = |(nla)|” = e . (B.238)
Therefore, the probability p(n) of finding n photons in |«) is given by a Poisson
distribution and the mean photon number

oo 2\ n
A= (a|N — o lal? (lo®) _lal?y 2 el 2
(a| Ny = an T;n ) e |e|“e la]”,
(B.239)
where N = a'a is the number operator. We also obtain
An = /{a|N?|a) — {(a|N]a) = V. (B.240)
(iii) We obtain
h mhw
Az)* = 57— Ap)’ = 2 B.241
(ao = ST (ap? = (B.241)

so that AxAp = %h, independently of a.
The temporal evolution is governed by the Schrédinger equation and we have

W)(t)) = e_%Ht|a> — e—iw(N+ t __‘a‘2 Z \/_|n

7uut)

= o detedel (O‘GTIM — e o)), (B.242)

n=0

where a(t) = e *“*a. Therefore, the wave packet remains a minimum uncertainty
coherent state at all times, and its centre in phase space follows the classical path
in time. This is made more explicitly by computing the expectation values of x
and p:

(x(t)) = 4/ :lh Re(a(t)) = (x(0)) cos(wt) + <f’r(1(<i)> sin(wt),
(p(t)) = vV2mhw Im(a(t)) = (p(0)) cos(wt) — mw(z(0)) sin(wt).

(B.243)

Exercise 8.10 The initial atom—field state is

o) = l9) ® Y ealn), (B.244)
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where

o =P e (B.245)
vn!
The temporal evolution of the atom—field state in the Jaynes—Cummings model
was discussed in exercise 8.7. Given the initial condition (B.244), we obtain

[p(t)) = Z [cn cos(Av/nt)|g) — icnia sin(AVn + 1t)[e)] |n), (B.246)

n=0

where we have assumed A real, the detuning parameter A = 0 and set h = 1.
The density matrix describing the atomic state p(® at time ¢ is obtained after
tracing over the field degree of freedom the overall density matrix [(t)){y(¢)].
The matrix elements of p(*)(t) in the {|g), |e)} basis read as follows:

o0
pii = D leal” cos® (A,

n=0
Pl =1-plP), (B.247)
P_f;? = (peg (a) = chncn_H cos(Av/nt) sin(Av/n + 1t).

n=0

After writing explicitly the coefficients c¢,, we obtain

p_f,‘;) Ze_“" |7’|L cos ()\\/_t)

n=0

(@ _ N~ —la? o™
pled = e T sin ?(\Wnt) (B.248)

n=0

pSY)

p(e(;) =3 Z —la)? |Oé| \/r?—ﬂ cos()\\/ﬁt) sin()\\/n + 1t).

Given the density matrix p(®(¢), it is easy to determine the Bloch-sphere
coordinates (x(t),y(t),z(t)) of the two-level atom and the entropy S(t) =
— Zle Xi(t) log Ai(t), where Ai(t), A2(t) are the eigenvalues of p(® (). The von
Neumann entropy S(¢) is a measure of the atom-field entanglement.

Examples of the temporal evolution of a two-level atom interacting with a
single-mode field, initially prepared in a coherent state, are shown in Figs. B.11-
B.12. The first figure refers to the short-time motion. The representative point
describing the atomic state exhibits a motion similar to a spiral and collapses to
the centre of the Bloch sphere. Thus, the state of the atom is no longer pure and
its entropy is non-zero. The usual Rabi oscillations between the atomic states
lg) and |e) are damped. Note that the number of oscillations before damping
dominates increases when the average number of photons 7 in the field is larger.
This is quite natural as the transition to the classical electromagnetic field takes
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place when the number of photons 7 — co. The behaviour of the atomic state at
longer times is shown in Fig. B.12. The main feature of this figure is the existence
of revivals; that is, at times much longer than the damping time, the amplitude
of the Rabi oscillations increases.

1 1
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!’ 1
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Fig. B.11 The temporal evolution of a two-level atom interacting with an initially co-
herent single-mode field with a = /2 = /10 (top) and /40 (bottom): Bloch sphere
trajectory (left), Bloch-sphere coordinates y (dashed curve) and z (full curve) versus time

(middle) and entropy S versus time (right). Note that for the chosen initial conditions
z = 0 at all times.

0 10 20 30 40 50 0 10 20 30 40
A A

Fig. B.12 The same as in Fig. B.11 but at longer times, for n = 40.

The phenomenon of collapse and revival is repeated with increasing time
and can be qualitatively understood as follows. Rabi oscillations of z(t) are de-
termined by the sum of oscillating terms o cos?(Ay/nt) appearing in pgq(t) =
1(14 2(t)). Each term in the summation represents Rabi oscillations with fre-
quency o 1/n. At time ¢ = 0 all these terms are correlated. As time goes on, the
Rabi oscillations associated with different values of n have different frequencies
and therefore become uncorrelated leading to the phenomenon of collapse. Cor-
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relation between these contributions is restored, at least partially, at longer times
and revivals occur. Note that revivals are purely quantum phenomena and are
due to the discrete structure of the photon distribution (only integer n values are

allowed).
The relevant time scales can be estimated as follows: the period tr of Rabi
oscillations is given by the inverse of the Rabi frequency at n = n; that is,

tr ~ 1/Qn ~ 1//\\/5. These oscillations continue until the collapse time t.
when the terms associated with different n values become dephased. Since in the
initial coherent state approximately An = /7 Fock states are relevant, t. can
be estimated from the condition (Qatan — Qa—an)te ~ 1, leading to t. ~ 1/A.
Finally, the revival times tgm) can be estimated by requiring that the phases
of the oscillations corresponding to neighbouring photon numbers differ by an
integral multiple of 27; that is, when (Qs — Q7 _1)t'™ = 27wm. This implies
t™ ~ m+/A/A. In particular, the time of the first revival (m = 1) is ~ v/i/A.
Therefore, revivals, which are a purely quantum phenomenon, require longer and
longer times when n — oo.

It is instructive to evaluate the entropy at the first Rabi oscillation; that is, for
Wit = %, in the limit of large mean photon number 7 (note that t corresponds
to half of the period of Rabi oscillation; that is, £ = %tR). We first evaluate the
matrix elements of p(®(t) in (B.248), assuming that only the terms with n—7 < @
contribute significantly. This is the case as for a coherent state the root mean
square deviation An in the photon number is equal to v/ < 7. We then obtain
P9 (1) ~ %, BRAGIES £, from which we can compute A1(f) = % and
Ao(f) = 1 — %. Note that S(f) o (1/7%)log(1/A*) — 0 when 2 — oco. This
is expected since there is no decoherence induced by a classical electromagnetic
field.

Exercise 8.11  We apply the unitary transformation (8.24) to both atoms, with

0 = % and phases ¢1 and ¢2. The global unitary transformation is given, in the

{lg1,92),191,€2),le1, g2), e1, e2)} basis, by
1 —jei®t 1 _jetP2
_ 1 1
V= [—ie‘“’l 1 ] © [—ie_i¢2 1 ] : (B.249)

After application of U to the Bell state ﬁ(|el7 g2) — |91, €2)) we obtain the state
ﬁ [—i(€i¢2 _ ei¢1)|gl792> _ (1 + ei(¢1—¢2)>|gl762>
+ (1 + ei(¢2*¢1))|61792> Jrl-(efim _ eii¢2)|61,62>] ’ (B.250)

from which the probabilities (8.42) directly follow.

Exercise 8.12 (i) The electric field is given by E = —V® and the equations
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of motion for the ion are M# = qE. Thus, we obtain

. q |Uo Vo

i o= —-L [—2 cos(wrrt) — G—EQ] z, (B.251a)
. q [Uo Vo

V=1 {—2 cos(wrrt) + (1 —€) —2] Y, (B.251b)
. qg Vo

=L, (B.251c)

Therefore, the motion along z is harmonic, with frequency

w. = ,/%, (B.252)

while the motion along y and z is governed by the Mathieu equation (8.45), where

4qeVy 2qUo
Yy = Vo 205 B.253
“ Mot R2 T T M R (B.253)
for ¢ = z and
74(](1 —e)Vo _ 2qUy

ay:

= —-——— B.254
Moz Rz " T T MR (B.254)
for £ = y. The analytic treatment of the Mathieu equation can be found, for
instance, in Leibfried et al. (2003a). Here in Fig. B.13 we simply draw, for
small ¢, a, the stability region in the g—a plane, as obtained from the numerical
integration of the Mathieu equation.

05 - 4

Fig. B.13 The stability diagram for the Mathieu equation. The two solid curves bound
the stability region.
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(ii) As an example, we compare in Fig. B.14 the approximate solution (8.46) to
the Mathieu equation (8.45) for ¢ = 0.3 and various a values. It is clear that
(8.46) is a good approximation for small a (and ¢), while, as expected, it differs
more and more from the exact solution when the stability border is approached.

1.4 T T T T 1.4 T T T T
1.0 1.0
0.6 0.6
0.2 0.2
Ry Ry
-0.2 -0.2
-0.6 -0.6
-1.0 -1.0
1.4 ! ' ' ! 1.4
0 0
1.4
1.0
0.6
0.2
wpS

-0.2
-0.6
-1.0

-1.4
0

Fig. B.14 A comparison between the numerical integration of Eq. (8.45) (solid line)
and the approximate solution (8.46) (dashed line), for ¢ = 0.3, a = 0 (top left), 0.1 (top
right), 0.4 (bottom left) and 0.65 (bottom right).

It is interesting that the approximate solution (8.46) gives harmonic oscil-
lations of size &, at a frequency we = Bewrr/2 < wrr (the secular motion),
superposed with smaller driven excursions of size £yge/2 < o, at a frequency
wrr (the micromotion). If the fast and small oscillations of the micromotion are
neglected, the motion can be approximated by that of a harmonic oscillator at a
frequency we. Such a harmonic approximation is used in the rest of this section,
starting from the ion trap Hamiltonian (8.47).

Exercise 8.13 The balance between the harmonic and the Coulomb forces
gives the equilibrium positions. This leads, for N = 2, to the following equations:

q2
,Mw§z1 — ﬁ = O7
TEQ\R2 — 21
- (B.255)
—Mw?zo+ ——— = 0.

dmeo(z2 — 21)2
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It is convenient to employ units in which ¢*/(4meoMw?) = 1, so that the above

equations become
! 0
——— =0,
ECEENE
1
—z0+ —— =0,
2+ (2 — 1)

(B.256)

with solutions (equilibrium positions)

1\1/3 1\ /3
21 = z§0) (Z) , 22 = zéo) = fz§0) = (Z) . (B.257)

For N = 3 ions, we obtain

1 1

S P C
+ ! ! =0 B.258
= (22 —21)2 (23 —22)2 (B-258)
1 1
—2z3+ + = 0.

(23 —21)% (23 — 22)?

The sum of these three equations gives the condition z; 4 z2 + z3 = 0. Symmetry

considerations tell us that zo = 0, z1 = —=z3, thus obtaining the equilibrium
positions
5 1/3 5 1/3
z1 = zio) =—|- , Z2 = zéo) =0, z3= zéo) = —zio) = (-
4 4
(B.259)

Let us now compute the normal modes of vibration of the string about the
equilibrium positions. Starting from Hamiltonian (8.47) we obtain the equations
of motion

5 = Z+Z o Z(Zk72i)2,( 1,...,N),  (B.260)

k=i+1

where we have set the unit of time in such a manner that w, = 1. By linearizing
(B.260) around equilibrium positions and setting

z=29+&, (i=1,...,N), (B.261)

we obtain

N
& —&i .
22 (0) (0))3 +2 Z (0)7(0))3, (i =1,...,N).

k=it1 (Zk
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For N = 2 Egs. (B.262) read as follows:

. & — &
&= & +2m,
? ! (B.263)
£ = g9 f278
-y
Looking for normal modes, &;(t) = a;e’!, we obtain
2 2 —& _
—Ww 51 —|—§1 —QW - 07
25 51 (B.264)
_w2§2 + 52 + 2# = 0.

EIRR

After substitution of the equilibrium positions (B.257) into (B.264) we arrive to
the eigenvalue equation (2 — w2)2 — 1 =0, whose solutions are

wi =1, wa = V3. (B.265)

The corresponding eigenstates are (§&1 = 1, £&2 = 1) (centre-of-mass mode) and
(—1,1) (stretch mode).
For N = 3, we similarly derive the eigenvalue equation

2, 14 8 1
—w'ty % ~35

det| -2 _2im 5 | =g (B.266)

1 8 2, 14

—5 -5 Wty

whose solutions are
2

wi=1  w =3 w= ?9. (B.267)

The corresponding eigenstates are (§1 = 1, &2 = 1, £&3 = 1) (centre-of-mass mode),
(—1,0,1) (stretch mode) and (1,—2,1).

Exercise 8.14 We look for a unitary operator U such that Ulg,0) =
27]:’:0 cnlg,m). We first construct U ' step-by-step; that is, starting from a
generic superposition Zﬁ;o ¢nlg,m), the operator U~! maps this state into the
ground state |g,0). As a first step, a red detuned laser transfers the entire pop-
ulation of the state |g, N) into |e, N — 1). Then a tuned laser moves the entire
population of |e, N —1) into |g, N — 1). We then transfer |g, N — 1) into |e, N —2)
and so on. Note that at each transformation we must keep track of what is
happening to all populated levels of the trapped ion. Inverting the procedure
illustrated above, we obtain the operator U. Note that 2N single-qubit (-ion)
gates are required to construct a generic N-level state. Further details can be
found in Gardiner et al. (1997).
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Exercise 8.15 (i) The term e**% in (8.53) couples the radiation to the motion
of the trapped ion. Therefore, at resonance it is possible to induce transitions
lg,n) < |e,n’), with renormalized Rabi frequency

Qo = Qn[e*7|0)]. (B.268)
In order to evaluate the matrix element (n'|e***|n), we employ the formula

[A, B]
B = etePem (B.269)

which is valid when the operators A and B are such that
[A,[4,B)] = 0 = [B,[A,B]. (B.270)

Therefore, taking A = ina’ and B = ina, we obtain

e = eikzO(aua) = e_%nzei"aTei"a. (B.271)
Since
ina = 1 . \m n'
e"n) = —y ) —m) In —m), (B.272)
= ml !
we obtain
ik L (—in)™ /!
ikz _ _—3m :
(n'le™F|n) = e 2 ;0 m/] (' —m)!
n . m '
x {n' —m/| () S In—m). (B.273)
m! (n —m)!
m=0

/

Due to the orthogonality of the Fock states, (n’ —m/|n—m) = 8,/ _m/ pn—m. Thus,

Eq. (B.273) becomes

ikz| —1p? i (7i17)(m+n/_n)(l‘7])m Vn!lnl

n)=e m!(m+n’ —n)!  (n—m)!

(n'le (B.274)

m=max(0,n—n’)

(ii) When 1 < 1; that is, the wavelength of the laser is much larger than the
extension of the ion wave function, we can expand the exponential in (8.53) to
the first order in #:

e — ein(au-a) ~ 1—|—inaT + ina. (B.275)

The three terms on the right-hand side of this equation are associated with the
carrier resonance and the first blue and red sidebands.
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Exercise 8.16 First of all, we write down the equations of motion for the
three-level system:

¢g = iccQ2 exp[—i(wge — w2)t + ig2],
Ce = il exp[—i(wge — wWa — w1)t + ig1], (B.276)
Ce = icgQla expli(wge — w2)t — id2] + ice expli(wge — wa — w1)t — ih1].

Note that, when 1 = 0 (or Q2 = 0), we recover the well-known equations of
motion for a two-level system in a classical electromagnetic field.
We now make the following assumptions:

A = wge — w2 > Q1,8 Wge — W2 R Wge — Wa — W1- (B.277)

Therefore, ¢4(t) and c.(t) change in time much more slowly than c.(¢) and we
can integrate the last equation in (B.276) neglecting the variation in time of ¢4
and ce. We also assume that c.(t = 0) = 0. This leads to

Ce = cgfl ei(Bt=¢2) | % l(At—=01) (B.278)

A

After substitution of this expression for c. into the first two equations of (B.276),
we obtain

95 Qs
ég =1 KQ cqg +1i —IA 2 gil¢2=¢0) ¢
0.0 02 (B.279)
Ce = 1 —1A 2 g i(P2=91) cg+1i Kl Ce.-
It is clear that the Rabi frequency Qg for this two-level system is given by

Eq. (8.57).
Note that, since the exact equation for ¢. (B.276) contains terms oscillating
with frequency A, the Raman approximation is valid when

2021 Q2

Qr = A

< A (B.280)

Such a condition is fulfilled when ©1,Q2 < A. Moreover, we can estimate from
(B.278) that

Qo
A |Cg |7
A

Since |eg), |ce| < 1, we have that the population of level |¢) does not exceed

lcel- (B.281)

lee| ~

Q
lce| ~ A < 1, (B.282)

where we have considered the special case Q = Q1 = Q2. Therefore, level c is
very weakly populated.
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A comparison between the Raman approximation and the direct numerical
integration of the equations of motion (B.276) is shown in Fig. B.15. It is clear
that the Raman approximation is quite good in the case Q/A = 0.1 < 1.

Fig. B.15 A comparison between the numerical integration of Egs.(B.276) (solid line)
and the Raman approximation (dashed line), for Q1 = Qg = 0.1, ¢1 = ¢2 = 0, initial
conditions ¢y =1, ce = ¢c = 0, A = 0.3 (above) and A =1 (below): temporal evolution
of the z coordinate of the Bloch sphere for the qubit spanned by the levels |g) and |e)
(left figures) and population of level |¢) (right figures).

Exercise 8.17 The matrix representation of R4 (0,¢) in the subspace
{lg,0),le,1),1g,1), e, 2)} reads

cos g —ie'® sin % 0 0
L —ig i 0 0
—ie sing  cosg 0 0
Ri(0,0) = 0 2 0 ? cos B it g0 |- (B:283)
V2 V2
0 0 —ie™" sin % cos %

It is then easy to check by direct matrix multiplications that the global effect of
the sequence of pulses (8.61) is

R, (% g) R (r,0) Ry (% g) Ry(m,0) = —1I. (B.284)
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Therefore, there is no coupling between the states |g, 1) and |e, 2) and three states
(lg,0), e, 1),|g,1)) of the computational basis acquire a phase factor of —1. On
the other hand, the forth state, |e, 0), of the computational basis is not affected by
the blue side band pulses and its phase does not change. Therefore, the composite
pulse (8.61) acts as a CMINUS gate (up to an overall phase factor of no physical
significance).

Exercise 8.18 The motion of the particle is bounded within the interval [0, al;
that is, its wave function ¢(x) must be zero outside this interval. Continuity of
the wave function at x = 0 and x = a implies

lim ¢(z) = lim ¢(z) = 0. (B.285)

r—0+ r—a—

The solutions to the stationary Schrodinger equation H¢(z) = E¢(x) inside the
interval [0, a] can be written as

P(x) = Ae'™™ 4 Alem ", (B.286)

where A and A’ are complex constants. Since ¢(0) = 0, it follows that A" = — A,
and therefore
o(x) = 2iAsin(kx). (B.287)

Moreover, ¢(a) = 0, which leads to

k= (B.288)

where n is an arbitrary positive integer. If we normalize (B.287); that is, we
require fj;o dz|¢(z)]> = [; dz|¢(z)]* = 1, and we take into account (B.288), we
then obtain the stationary wave functions

Pn(z) = \/gsin(%x), (B.289)

m2h2

2ma?

with energies

E, =

(B.290)

The general solution of the Schréodinger equation ih%w(m, t) = Hy(z,t) is

Y t) = D cne FE G, (@), (B.291)
n=1
where the coefficients ¢, are determined by the initial condition ¢ (z,0) = ¥o(x):

cn = /Oa dxipo(z) (). (B.292)
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Exercise 8.19 Since we are looking for bound states, we limit ourselves to
studying the case —Vp < E < 0. Taking into account the boundary condition
limz— 400 ¢(x) = 0, we obtain

Aexp(kz), x < —a,
¢(z) = { Beos(k'z) + Csin(k'z), —a <z <a, (B.293)
D exp(—kzx), x > a,

with

k= %\/meE, K = —v2m(Vy + E). (B.294)

By requiring the continuity of ¢ and d¢/dxr at x = +a we derive four linear
homogeneous equations in the variables A, B, C, D:

St =

ka) = Bcos(k'a) — Csin(k'a),

Aexp(—ka)

Dexp(—ka) = Bcos(k'a) + Csin(k'a),
(—ka)
(—ka)

B.295
kAexp(—ka) = k'Bsin(k'a) + k'C cos(k'a), ( )

—kDexp(—ka) = —k'Bsin(k'a) + k'C cos(k'a).

After appropriately adding and subtracting these relations we have
k(A + D) exp(—ka) — 2k' Bsin(k'a

(A — D) exp(—ka) + 2C sin(k' A
k(A — D) exp(—ka) — 2k'C cos(k'a

(B.296)

Non-trivial solutions are obtained when

exp(—ka) —2cos(k’a) 0 0
kexp(—ka) —2k' sin(k'a) 0 0
0 0 exp(—ka) 2sin(k’a) ’
0 0 kexp(—ka) —2k’ cos(k’a)

det (B.297)

that is, when one of the following two equations is satisfied:

k'sin(k'a) — kcos(k'a) = 0, (B.298a)
k' cos(k'a) + ksin(k'a) = 0. (B.298b)

If (B.298a) is satisfied, then

_ _ _ exp(—ka)
D = A, C =0, B = cos(Fa) A, (B.299)

with A determined from the normalization condition fj;o dz|p(z)]* = 1. Note
that this solution is even, namely ¢(—z) = ¢(x). On the other hand, if (B.298b)
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is satisfied we obtain

_ _ _ 7exp(—ka)
D=-A  B=0 C=-TF5A (B.300)

and again A is determined from the normalization of the wave function. This

solution is odd, ¢(—z) = —¢(x).
We now find the energy levels. First of all, we observe that (B.294) leads to

2mVy

= = k3. (B.301)

k‘2+k/2 —

In the case of even eigenfunctions, the energy levels are determined by the in-
tersections of (B.301) with (B.298a), in the case of odd eigenfunctions by the
intersections of (B.301) with (B.298b). The solutions can be found graphically,
as shown in Fig. B.16. Note that the number of bound states depends on the
parameter v/koa, that is , on the depth Vo of the square well. If kga < 3, namely
W<V= %, there exists only one bound state of the particle, corresponding
to an even wave function. If 5 < koa < 7, that is, V < Vo < 4V, we have two
bound states since a level corresponding to an odd wave function appears, and so
on. Note that energy levels corresponding to even and odd wave functions appear
alternatively as Vi increases.

4 |
|
I
|
|
3 r | B
}
1
/
]
©
22r // i
/
/
/
//
1 y d
s
s
s
s,
s,
0 V4
0 /2 n
)
kKa

Fig. B.16 The energy levels of a particle in a square well potential determined graph-
ically. The circular arcs have radius kpa = %, %T", %. The intersections of these arcs
with the solid and the dashed curves determine the energy levels corresponding to even
and odd eigenfunctions, respectively.
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Exercise 8.20 It is useful to define o = % and 8 = 1. Then we have

V2
1000 1 000
10 BB o0 1o p Bo
SWA_Oﬂﬁ*O, (SWAP)_Oﬁ*BO,
000 1 000 1
1000
2 0010
SWAP = (VSWAP)" = | /1 o o |- (B.302)
0001

I ® R.(n/2) = diag(a®,a,a”, ), IQR.(—7/2) = (IR R.(r/2))",
I ® R.(r) = diag(—i, i, —i, ). (B.303)

If we multiply the above matrices, as in (8.68), up to an irrelevant global phase
factor, we obtain the CMINUS quantum gate.

Exercise 8.21 We wish to compute the transmission and reflection probabili-
ties for an incident particle, with momentum sk (and energy E = %), propa-
gating from left to right (that is, coming from = — —o0). We consider the case
0 < E < V. The solution to the stationary Schrodinger equation has the form

exp(ikx) + R exp(—ikz), x <0,

#(x) = { Acosh(k'z) + Bsinh(k'z), 0 <z < a, (B.304)
T exp(ikx), z > a,
with
k= %\/QmE, K = %\/2m(Vo —B). (B.305)

The first term in the first line of (B.304) is the plane wave describing the incident
particle, the second term in the same line corresponds to a reflected particle,
with momentum —#Ak. Finally, the only term in the last equation of (B.304) is
associated with a transmitted particle. The terms 7" and R define the transmission
and reflection coefficients, respectively.

Continuity of the wave function and of its derivative at x = 0 and = = a leads
to the following equations:

1+ R = A,
Acosh(k'a) + Bsinh(k'a) = T exp(ika),
ik(1— R) = k'B,
k' Asinh(k'a) + k' B cosh(k'a) = ikT exp(ika).

(B.306)
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We can solve these equations, thus obtaining

2ikk’ exp(—ika)
2ikk’ cosh(k’a) + [k? — k'?] sinh(k’a)’
[k? + k'?] sinh(k'a)

T =

"~ 2ikk’ cosh(k’a) + [k? — k’2] sinh(k’a)’ (B.307)
—1+R,
k

It is easy to verify that |R|?> + |T|*> = 1; namely, the sum of the reflection and
transmission probabilities is equal to unity. We emphasize that, in contrast to
the classical predictions, the particle has a non-zero probability of crossing the
potential barrier even though its energy FE is smaller than the height V4 of the
barrier (tunnel effect).

Exercise 8.22 The time-evolution operator over a time interval T reads

o) = exp] L (22 4 2] = con( B2 1 tsn ("D ) o,

(B.308)
where we have defined
2T /1
o(T) = 7\/ 798+ A% (B.309)
n 40 (B.310)

A
= 707
\/iwg—&—AQ 2\/iwg+A2

Therefore, the pulse induces a rotation through an angle 6(7) about the n-axis
of the Bloch sphere.

Exercise 8.23 Let us first consider the circuit in Fig. 8.27 (left). The se-
quence of gates Up (d) = 7%) Ug (9 =5,0= fg) Up (ng = 7%) transforms the
input states |0) and |1) as follows:

0) = [1)0l0)y — [1)0]0); — %(|1>0|0>1 +1]0)o[1)1)
- %(|1>0|0>1 + |0>0|1>1) = ﬁ(|0l> + |1l>>7
—q (B.311)
1) = 10)o/1); — —il0)o[1); — — (i|1>0|0>1 +|0>0|1>1)

V2
- %(|1>0|0>1 - |0>0|1>1) = %(|0/> _ |1/>>.

This is exactly a Hadamard transformation.
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We now show that the circuit in Fig. 8.27 (right) implements the CNOT gate
(up to a sign factor). Indeed, we have

0)[h) = [1)l0)y|h) — [1)q/[0)y,[h) = [0')]R),
0l0) = [1o]0)1]0) = |10}, ) = 0)]v). Ba12)
[DIR) = [0)[1),[h) — [0)g 1)y, [v) = [1)]v),
[DJv) = [0)o]1);]v) — —[0) (1)1 [R) = —[1")|R).
Exercise 8.24 We obtain
. |11 1 0 . [1 01
wvr@it = 3 [y 1o oo 9 (1 1]
i cos? —isin¢ ;o

with Up and Up defined in (8.78) and (8.79). Therefore, the entire Mach-Zehnder
interferometer corresponds to a beam splitter of transmittance T' = cos> (g) Note
that, if the phase shift ¢ = 0, then the photon leaves the interferometer in the
same direction as it entered, as expected from the fact that H? = I.

Exercise 8.25 It is convenient to write the matrix U in (8.86) as follows:

A B C
U=|DEF|. (B.314)
G HEK

The transformation of the creation operators is given by

al = > Unah, (B.315)

namely
al — Adl + Dal + Ga;,
al — Bal + Eal + Hal, (B.316)
al — Cal + Fa} + Ka}.

Therefore, the initial state |¢))|1)|0) is mapped by U into

[a + B(Aal + Dal + Gal) + ﬁ’y(AaJ{ + Dal + Gag)Q](BaI + Eal + Hal)|000).

(B.317)
Since we accept only measurement outcomes with one photon in mode 2 and no
photons in mode 3, in (B.317) we must keep only the terms with mode 2 in the
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state |1) and mode 3 in |0), thus obtaining

@B + B(AE + BD)a] + (A% + 24DB)(a})?] |010)

= 1 o+ Bal = ()] [010) = 31wy 110).  (B.318)
Therefore, the final state |¢’) is obtained with probability 1.
Exercise 8.26 The initial state can be written as
ay]0101) + «d |0110) + B+ |1001) + 86 |1010). (B.319)
Note that, for the sake of simplicity, we omit the indices 1,...,4 specifying the

modes. Using (8.83) we can see that the first beam splitter transforms (B.319)
into

ay[0101) — —=ad [1100) + —5ad[0110) + /3y [1001)
+ 5767(0011) — =38 |2000) + —>(5]0020).  (B.320)
After the two non-linear sign shift gates we have (with overall success probability
2
(3)" = 1%)
a[0101) — —5ad [1100) + —5ad[0110) + 4y [1001)
+ 75 8710011) + == 36 |2000) — —=/35[0020).  (B.321)
After the final beam splitter we obtain
ay[0101) + ad [0110) + B~[1001) — 35 [0101). (B.322)

Exercise 8.27 A 0 = 7, ¢ = —F beam splitter maps

|1/’+>12 = Tlg(ai,ha;u +ai,va§,h)l0> (B.323)
into .
7 (bl ,b] , + b} b5 ,)10) (B.324)
and
16)10 = 5 (al yal, £af ,a},)0) (B.325)
into . ) , , ,
2 [01)7 + (60)7 £ (01,)* % (85.)°] 10)- (B.326)

Therefore, in all the above three cases a single detector clicks. We can distinguish
[T from |¢i> since the photons have either orthogonal polarizations or the same
polarization, respectively. Of course, we cannot distinguish, using polarization
measurements, between |¢") and |[¢~). A proof that it is impossible to implement
a complete Bell measurement using only linear optical elements can be found in
Liitkenhaus et al. (1999).
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Exercise 8.28 Let ) = a|0) + 3|1) and p = [¢)(1)|. If Alice measures |¢T),
then the state of Bob’s particle collapses onto (a|1)+3]0))(a*(1|+8"(0]) = 02p0%.
Analogously, if Alice measures |¢~) or |10 ), then the post-measurement state
of Bob’s qubit is oypo, or o.po., respectively. Taking into account all three
(equiprobable) possibilities, Bob’s state is described by the density matrix

_1

1-1z (z—1y)
r_ 1 _ 1 3 3
p = 3(02pos +oypoy +0.p0.) = 3 [ i . (B.327)
—i(z+iy) 143z

In the case of an ideal universal NOT transformation,

1-z  —(z—1y)

—(z+iy) 1+z ’ (B.328)

/ 1
Pideal = 3

Given a pure initial state, p}4., is also pure and therefore the fidelity of the state
, .
pis
F = Tr(p;dealp/> = % (B329)
Exercise 8.29 The projector over the subspace spanned by [¢7), |¢>+>, l[o™)
is
P= )y |+ 16" )0 |+ 167 ) (o7 . (B.330)

A measurement projecting onto this subspace maps the initial state p~(t°t) =

[0) (0] @ [ (] into in

P® Igon) pl° (P @ Is
pteot) = (2O Toon) oy (P Ipey) (B.331)

Tr [ (P ® Ipob)]

We can compute from p(*®*) the states of p(lA) and pgA) of Alice’s qubits:

143z 2(x—iy)

2 . 2
s(z+iy) 1-3z

(4) (4) _ 1

pr - = P2 = 3 ) (B.332)

where z,y, z are the Bloch-sphere coordinates of the initial state |¢)). The fidelity
of the clones is given by

F = @lpi) = @i |y) = 3. (B.333)
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